
2nd Reading

May 5, 2014 15:52 WSPC S1793-5245 242-IJB 1450035

International Journal of Biomathematics
Vol. 7, No. 4 (2014) 1450035 (21 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793524514500351

Modeling and qualitative analysis of diabetes
therapies with state feedback control

Mingzhan Huang∗,† and Xinyu Song∗,‡

∗College of Mathematics and Information Science
Xinyang Normal University, Xinyang 464000, P. R. China

†Research Institute of Forest Resource Information Techniques
Chinese Academy of Forestry, Beijing 100091, P. R. China

‡xysong88@163.com

Received 6 September 2013
Accepted 24 March 2014
Published 7 May 2014

For the therapies of diabetes mellitus, a novel mathematical model with two state
impulses: impulsive injection of insulin and impulsive injection of glucagon, is proposed.
To avoid hypoglycemia and hyperglycemia, the injections of insulin and glucagon are
determined by closely monitoring the plasma glucose level of the patients. By using
differential equation geometry theory, the existence of periodic solution and the attrac-
tion region of the system have been obtained, which ensures that injections in such an
automated way can keep the blood glucose concentration under control. The simula-
tion results verify that the better insulin injection strategy in closed-loop control is a
larger dose but longer interval rather than a smaller dose but shorter interval. Besides,
our numerical analysis reveals that medicine studies and practice that slow down the
insulin degradation are helpful for the plasma glucose control. Our findings can provide
significant guidance in both design of artificial pancreas and clinical treatment.
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1. Introduction

With the economic development and the improvement of people’s life, diabetes is
becoming more common almost everywhere in the world. Diabetes is a metabolism
disorder of the glucose–insulin regulatory system. It is mainly caused by the fact
that either the pancreas do not release or release little insulin (the case is classified
as type 1 diabetes), or the glucose cannot be transported out of the blood because
of body cells’ inefficient use of insulin (the case is classified as type 2 diabetes).
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If one’s body does not have enough insulin in the plasma or the body cells cannot
utilize insulin sufficiently to uptake glucose, his or her plasma glucose level will
remain dangerously high, that is to say, he or she will develop diabetes mellitus.
Over the past decades, extensive research work has been done in studying how to
provide better treatments to diabetic patients [8, 24, 26].

The most typical diagnostic in diabetes is hyperglycemia, and the common treat-
ment regimen is injecting insulin subcutaneously either daily or continuously. Nowa-
days, insulin pump, a medical device for administration of insulin, is popularly used
in continuous subcutaneous insulin infusion (CSII) therapy for both types 1 and 2
diabetes [3, 9, 16, 19, 20]. All insulin pumps used by diabetics treatment follow
the so-called open loop approach, that is, insulin is injected without knowledge of
plasma glucose level [12]. A patient using insulin pump has to inject insulin manu-
ally before or after meal ingestion to avoid hyperglycemia, and the dose has to be
carefully computed based on the carbohydrate to be ingested [12]. But there are a
lot of difficulties for common people to do that. On the one hand, not all the food
people buy mark the carbohydrate content in their instruction, so a diabetic does
not know exactly how much carbohydrate he or she intakes; on the other hand,
because of low educational level, many diabetics cannot complete the transforma-
tion between the amount of carbohydrate and the dose of insulin injection correctly.
So two risks in the open-loop control are hypoglycemia and hyperglycemia, which
are caused by insulin over-dosing and under-dosing, respectively.

Besides, critically ill patients in Intensive Care Unit (ICU) are extremely diverse
in the causes and dynamics of their hyperglycemia [8]. As a result, their response to
an insulin injection or a glucose input can vary significantly and hyperglycemia and
hypoglycemia often occur at the same time. Hypoglycemia also occurs when a senior
patient or other elderly person with diabetes misses a meal or snack. Compared
with hyperglycemia, hypoglycemia is even more dangerous for the patients. Severe
hypoglycemia can cause fainting and brain damage, in some cases, may lead to
quick and unexpected deaths. A treatment option to this emergency is to inject
an amount glucagon subcutaneously or intramuscularly. This medication acts by
mobilizing glucose from glycogen stores in the liver. It works quickly, raising blood
glucose within several minutes [11].

To avoid the episodes of hyperglycemia and hypoglycemia simultaneously, also
to improve the life styles of the patients whose daily routine is severely disrupted
by the above therapy regimen, researchers have made great efforts to close the open
loop, that is, to develop an artificial pancreas [12, 21, 22]. Artificial pancreas or
closed-loop control of glucose level in diabetes is an integrated system consisting of
a reliable real time glucose monitor, a control algorithm and an injection device,
e.g. insulin pump. As a controller, artificial pancreas can substitute the endocrine
functionality of a real and healthy pancreas for diabetic patients and automatically
keep their plasma glucose level under control. The control algorithm can be either
empirical- or model-based. Although artificial pancreas is still in development, the
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research about it has attracted lots of attentions and considerable work has been
done [1, 2, 4, 10, 12].

In this paper, we will try to propose a new model to simulate the impulsive
insulin injection and glucagon injection in closed-loop control in view of the feedback
from glucose monitoring system, then study the model analytically and numerically.

In [12], Huang et al. extended the model proposed by Li et al. [14] and Li
and Kuang [13], incorporated impulsive injection of exogenous insulin in view
of the feedback from the glucose monitoring system, and proposed the following
system:



dG(t)
dt

= Gin − σ2G − a

(
c +

mI

n + I

)
G + b,

dI(t)
dt

=
σ1G

2

α2
1 + G2

− diI(t),




G < LG or I > IC ,

G(t+) = G(t),

I(t+) = I(t) + σ,

}
G = LG and I ≤ IC ,

(1)

with initial condition G(0) = G0 ≤ LG, I(0) = I0, where G(t) and I(t) repre-
sent the plasma glucose concentration and insulin concentration at time t ≥ 0,
respectively. Gin represents the constant glucose exogenous infusion, σ2G(t) and
aG

(
c +

mI(t)

k+I(t)

)
stand for the insulin-independent and insulin-dependent glucose

consumption respectively, and b > 0 is the hepatic glucose production rate.

The term
σ1G2(t)

α2
1+G2(t)

is the insulin secretion stimulated by elevated glucose con-

centration, and diI indicates the insulin degradation with di > 0 as a constant
degradation rate. Here, σ1, σ2, α1, a, c, m and k are positive constants. Parameter
σ(µU/ml) > 0 is the dose in each injection. The constant IC = nk1/(m− k1), k1 =
a−1L−1

G (Gin + b − σ2LG) − c, which is determined by the intersection of the null-

cline Gin − σ2G− a
(
c + mI

n+I

)
G + b = 0 and the horizontal line G = LG. LG is an

adjustable constant threshold value: when the glucose level reaches the threshold
value, which implies hyperglycemia occurs, the impulsive inject of insulin with dose
σ (µU/ml) shall be performed.

As mentioned in [12], two critical and harmful episodes in therapies of
insulin administration are hypoglycemia and hyperglycemia. Clearly, in system (1),
the threshold value LG can keep the glucose level not too high, that is, avoid the
episode of hyperglycemia. But the system did not pay as much attention to the
possible occurrence of hypoglycemia. In order to avoid hyperglycemia in diabetes
therapies, we must carefully determine correct dose and right timing of insulin
injection. Also, when the glucose level from the feedback of the glucose monitoring
system is too low, that is to say, hypoglycemia occurs, we must carefully determine
correct dose and right timing of glucagon injection. For the sake of simplicity, we
suppose the transformation between the glucagon injection dose and the change of
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plasma glucose concentration is a function expression

y = f(x),

that is, when a diabetic with symptoms of hypoglycemia is injected glucagon with
dose x(µU/ml), the glucose concentration will increase by y(mg/dl).

Motivated by the work of [6, 12], we propose the glucose–insulin system with two
state impulses: impulsive injection of insulin and impulsive injection of glucagon,
as follows:



dG(t)
dt

= Gin − σ2G − a

(
c +

mI

n + I

)
G + b,

dI(t)
dt

=
σ1G

2

α2
1 + G2

− diI(t),




{LA < G < LG} or

{G = LG and I > IC},

G(t+) = G(t),

I(t+) = I(t) + σ,

}
G = LG and I ≤ IC ,

G(t+) = G(t) + gin,

I(t+) = I(t),

}
G = LA,

(2)

with initial condition LA < G(0) = G0 ≤ LG, 0 < I(0) = I0, where LG and LA are
adjustable constant threshold value for glucose level: when the glucose level reaches
or passes the threshold value LG, which means the occurrence of hyperglycemia,
the impulsive injection of insulin with dose σ(µU/ml) shall be performed, and it
is easy to see that the glucose level must decrease when the insulin level surpass
the point IC ; when the glucose level reduces to the threshold value LA, which
means the occurrence of hypoglycemia, the impulsive injection of glucagon with
dose σ0 (µU/ml) can be performed, for simplicity, we directly denote the glucose
level impulsively increase by gin(mg/dl), where gin = f(σ0).

In this paper, we mainly discuss the dynamics properties of the system (2).
The paper is organized as follows. In Sec. 2, some notation and definitions of the
geometric theory of semi-continuous dynamical systems are provided. In Sec. 3, we
mainly discuss the existence of the periodic solutions and the attraction region of
the system by differential equation geometry theory. The paper ends with some
discussions and numerical simulations in Sec. 4, which not only confirm the theo-
retical results, but also are complementary to those theoretical results with specific
features.

2. Preliminaries

In this section, we give some notation and definitions of the geometric the-
ory of semi-continuous dynamical systems which will be useful for the following
discussions.
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Definition 1 ([5]). Consider the state-dependent impulsive differential equations


dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y),


 (x, y) /∈ M{x, y},

�x = α(x, y),

�y = β(x, y),

}
(x, y) ∈ M{x, y}.

(3)

We define the dynamic system consisting of the solution mappings of the system
(3) a semi-continuous dynamical system, denoted as (Ω, f, ϕ, M). We require that
the initial point P of the system (3) should not be in the set M{x, y}, that is
P ∈ Ω = R2

+\M{x, y}, and the function ϕ is a continuous mapping that satisfies
ϕ(M) = N . Here ϕ is called the impulse mapping, where M{x, y} and N{x, y}
represent the straight lines or curves in the plane R2

+, M{x, y} is called the impulse
set, and N{x, y} is called the phase set.

Remark 1. For the system (2), there are two state impulses. The first impulse set
can be written as M1 = {(I, G) : G = LG and 0 < I ≤ IC} and for any (I, G) ∈ M1,
we have ϕ1(I, G) = (I + kσ, G), where k is an integer such that I + kσ > IC ,
I + (k − 1)σ ≤ IC , that is to say, the phase set corresponding to the first impulse
can be written as N1 = {(I, G) : G = LG and IC < I ≤ IC+σ}. The second impulse
set can be written as M2 = {(I, G) : I > 0, G = LA}, and for any (I, G) ∈ M2,
we have ϕ2(I, G) = (I, G + gin), that is to say, the phase set corresponding to the
second impulse can be written as N2 = {(I, G) : I > 0, G = LA + gin}.
Definition 2 ([5]). For the semi-continuous dynamical system defined by the
state-dependent impulsive differential equations (3), the solution mapping f(P, t) :
Ω → Ω consists of two parts:

(1) Let π(P, t) denote the Poincaré mapping with the initial point P of the following
system 



dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y).

If f(P, t) ∩ M{x, y} = ∅, then f(P, t) = π(P, t).
(2) If there exists a time point T1 such that f(P, T1) = H ∈ M{x, y}, ϕ(H) =

ϕ(f(P, T1)) = P1 ∈ N{x, y} and f(P1, t) ∩ M{x, y} = ∅, then f(P, t) =
π(P, T1) + f(P1, t).

Remark 2. For (2) in Definition 2, if f(P1, t) ∩ M{x, y} �= ∅, and there exists
a time point T2 such that f(P1, T2) = H1 ∈ M{x, y}, ϕ(H1) = ϕ(f(P1, T2)) =
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P2 ∈ N{x, y} and f(P2, t) ∩ M{x, y} = ∅, then f(P, t) = π(P, T1) + f(P1, t) =
π(P, T1) + π(P1, T2) + f(P2, t).

If f(P2, t)∩M{x, y} �= ∅, . . . , f(Pk−1, t)∩M{x, y} �= ∅ and f(Pk, t)∩M{x, y} =
∅, then we can repeat the above steps and have the following form:

f(P, t) =
k∑

i=1

π(Pi−1, Ti) + f(Pk, t), P0 = P.

Definition 3 ([5]). If there exists a point P ∈ N{x, y} and a time point T1 such
that f(P, T1) = H ∈ M{x, y} and ϕ(H) = ϕ(f(P, T1)) = P ∈ N{x, y}, then f(P, t)
is called an order one periodic solution of the system (3) whose period is T1.

Definition 4. Suppose Γ = f(P, t) is an order one periodic solution of the system
(3). If for any ε > 0, there must exist δ > 0 and t0 ≥ 0, such that for any point
P1 ∈ U(P, δ)∩N{x, y}, we have ρ(f(P1, t), Γ) < ε for t > t0, then we call the order
one periodic solution Γ is orbitally asymptotically stable.

Definition 5 ([5]). Suppose the impulse set M and phase set N of the system (3)
are straight lines and a coordinate system can be defined in the phase set N . Let
point A ∈ N and its coordinate is a. Assume that the trajectory from the point A

intersects the impulse set M at a point A′, and, after impulsive effect, the point A′

is mapped to the point A1 ∈ N with the coordinate a1, then we call point A1 is the
successor point of point A, and the successor function of point A is F (A) = a1 − a.

Remark 3. For system (2), we define the coordinate of point H ∈ N1 =
{(G, I) |G = LG, I ≥ IC} as its coordinate in I-axis which we denote as IH .

Lemma 1 ([5]). Successor function F (A) is continuous.

Lemma 2. For the systems (2), if there exist two points A ∈ N1, B ∈ N1 such that
F (A)F (B) < 0, then there must exist a point C ∈ N1 which is between the points
A and B such that F (C) = 0, thus the system must have an order one periodic
solution which passes through the point C.

Proof. By Lemma 1, we can easily get that there must exist a point C ∈ N1 which
is between the points A and B such that F (C) = 0. According to Definition 5, we
know Γ = f(C, t) is an order one periodic solution. That completes the proof.

Lemma 3 ([27] Bendixson theorem of impulsive differential equations).
Assume Ω is a Bendixson region of (3), if Ω does not contain any critical points of
(3), then (3) has a closed orbit in Ω.

3. Dynamic Analysis of the System (2)

For type 1 diabetes, almost all of the β-cells in pancreas are dysfunctional and no
insulin can be secreted, so the parameter σ1 = 0 in both Models (1) and (2). For
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type 2 diabetes, a typical diagnostics is both hyperglycemia and hyperinsulinmia,
that is, the pancreas can still release some insulin, and hyperinsulinmia is possibly
caused by insulin resistance. Therefore, σ1 > 0 for type 2 diabetes.

In this section, we mainly discuss the existence of the periodic solution and the
attraction region of system (2) by the geometric theory of differential equation.
Before that, we consider the qualitative characteristics of the system (2) without
impulsive effect. In such case, the system (2) can be written as



dG(t)
dt

= (Gin + b) − (σ2 + ac)G − amGI

n + I
= P1(G, I),

dI(t)
dt

=
σ1G

2

α2
1 + G2

− diI(t) = Q1(G, I).

(4)

Similar to the discussions in [12], we can get when σ1 = 0, the system (4)
has a unique equilibrium E0(G0, 0), where G0 = (Gin + b)/(σ2 + ac), and E0 is a
global asymptotically stable node with two separatrices I = 0 and G = kI, where
k = amG0/(n(di − σ2 − ac)). When σ1 > 0, the system (4) has a unique positive
equilibrium E∗(G∗, I∗) which is a global asymptotically stable node or focus.

The isocline dG
dt = P1(G, I) = 0 has an asymptotic line G = Gin+b

σ2+ac+am = Gs.
Thus, in the system (2), if LA ≤ Gs, the horizontal lines G = LA would not intersect
with the isocline dG

dt = P1(G, I) = 0, which implies that the trajectory from the
initial point between the lines G = LG and G = LA will never undergo the second
kind of impulsive effect and remain above the line G = LA. So we assume that
Gs < LA < LA + gin < LG < G0 for the case σ1 = 0 and Gs < LA < LA + gin <

LG < G∗ for the case σ1 > 0 throughout this section. Clinically, if LA < Gs, or LG

is above G0 or G∗, some other medical treatment is required to bring the glucose
level up or down in practice.

Therefore, in this paper, we mainly study the system (2) in the region

W = {(G, I) |LA ≤ G ≤ LG, 0 < I < ∞}.

3.1. Existence of periodic solutions

Now we study the existence of periodic solutions of Model (2) for the case of type 1
diabetes (σ1 = 0) and the case of type 2 diabetes (σ1 > 0), respectively.

Theorem 1. For the case σ1 = 0, if Gs < LA < LA + gin < LG < G0 and IC < σ,

then the system (2) must have a periodic solution in the region W .

Proof. Suppose that the G-isoline dG
dt = 0 intersects the horizontal line G = LG

and G = LA at point C(LG, IC) and point M(LA, IM ), respectively. For system
(4), the trajectory passing through point M must intersect the line G = LG at two
points, then we denote them by Q(LG, IQ) and S(LG, IS), where IQ < IS . Besides,
we consider the point D(LG, ID), where ID = IC + σ.
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Based on the position relations between points D and S, the existence of periodic
solution to (2) is discussed.

Case 1. ID < IS , that is, the point D lies on the left of point S.

In the following, we prove that the system (2) has a unique order one periodic
solution, which only undergoes the first kind impulsive effect.

Obviously, the trajectory of the system (2) from point D must intersect the line
G = LG again at a point H(LG, IH), where 0 < IH < IC , then the point H is
mapped to a point H ′(LG, IH′) after an impulsive effect of the first kind, where
ID > IH′ = IH + σ > IC (because IC < σ, ID = IC + σ). Again, the trajectory
of the system (2) passing through point H ′ must intersect the line G = LG at a
point H1(LG, IH1), and the point H1 is mapped to a point H ′

1(LG, IH′
1
) after an

impulsive effect of the first kind, where IH′
1

= IH1 + σ. Since distinct trajectories
do not intersect, we can easily get 0 < IH < IH1 < IC < IH′ < IH′

1
< ID < IS .

Because point D is in the phase set, point H is the impulse point of point D and
point H ′ is the successor point of point D, we can get the successor function of
point D is F (D) = IH′ − ID < 0. Besides, for point H ′ in the phase set, point H1

is the impulse point of point H ′ and point H ′
1 is the successor point of point H ′,

so we can get the successor function of point H ′ is F (H ′) = IH′
1
− IH′ > 0. By

Lemmas 1 and 2, there must exist a point R in the first phase set which is between
the points H ′ and D such that F (R) = 0, thus the system (2) has an order one
periodic solution which makes point R as its phase point and only undergoes the
first kind impulsive effect (refer to the left panel of Fig. 1).

Now, we prove the uniqueness of the order one periodic solution. Choose an
arbitrary point P in region W , the trajectory of system (2) from point P must
intersect the horizontal line G = LG or G = LA without undergoing any impulsive
effect. Because the horizontal line G = LA is the second impulse set of system
(2), the trajectory of system (2) which intersects the horizontal line G = LA must
be mapped to the inner of the region W and then intersects the horizontal line
G = LG after undergoing several impulsive effects of the second kind. Besides, the
segment {(G, I) |G = LG, 0 ≤ I ≤ IC} is the first impulse set of the system (2),

G
0G

GL

AL
A inL g

' '
1H H D

M

SH CQ 1H

0 I

G
0G

GL

AL
A inL g

'
2 1A A

M

D2 1H A A C 1
'

2A A

0 I

(a) (b)

Fig. 1. Existence and uniqueness of order one periodic solution of (2) for Case 1.
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and the trajectory of system (2) which intersects this segment must be mapped to
the corresponding phase set {(G, I) |G = LG, IC < I ≤ IC +σ} which is also in the
horizontal line G = LG. So the trajectory of system (2) in region W must intersect
the horizontal line G = LG at a point A(LG, IA), IA > IC .

Arbitrarily choose two points A1 and A2 in the first phase set, where IC <

IA1 < IA2 ≤ ID. Then the trajectories of the system (2) through points A1 and A2

must intersect the line G = LG at some points A+
1 and A+

2 respectively, which are
in the impulse set and satisfy IH < IA+

2
< IA+

1
< IC . The points A+

1 and A+
2 must

be mapped to two points in the phase set after impulsive effect which we denote
by A′

1 and A′
2 respectively, where IA′

1
= IA+

1
+ σ and IA′

2
= IA+

2
+ σ. Obviously,

the point A+
i is the impulse point of Ai and the point A′

i is the successor point of
Ai, i = 1, 2. Then the successor functions of A1 and A2 satisfy F (A2) − F (A1) =
(IA′

2
−IA2)−(IA′

1
−IA1) = (IA′

2
−IA′

1
)+(IA1 −IA2) < 0, which means the successor

function F (A) is monotone decreasing in the segment CD, thus there exists only
one point R such that F (R) = 0 (refer to the right panel of Fig. 1).

Besides, for any point A ∈ DS, that is, ID < IA < IS , the trajectory of the
system (2) from point A must intersect the line G = LG without any impulsive
effect at some point A1, where IQ < IA1 < IC . Then the point A1 is mapped to
the point A′

1(LG, IA′
1
) after an impulsive effect of the first kind, where IA > ID >

IA′
1

= IA1 + σ > IC . Obviously, the point A′
1 is the successor point of A, and the

trajectory from point A′
1 will ultimately remain in the region encircled by the closed

curve �DH ∪ HCD, then we know the system (2) has no periodic solution passing
through the point A where A ∈ DS (refer to the left panel of Fig. 2).

For any point P (LG, IP ), IP ≥ IS , the trajectory of the system (2) from point
P must intersect the line G = LA without any impulsive effect at some point A1,
then the trajectory from point A1 will enter into and remain in the region encircled
by the closed curve�SMQ ∪ QCS after undergoing at least one impulsive effect of
the second kind, then we get that the system (2) has no periodic solution passing
through the point P (refer to the right panel of Fig. 2).

To sum up, the system (2) has a unique order one periodic solution in the region
W when ID < IS .

G
0G

GL

AL
A inL g

'
1A

M

D1Q A H C S

0 I

A

G
0G

GL

AL
A inL g

P

M

CQ 1P S

0 I
1A

2A3A

1B2B3B

(a) (b)

Fig. 2. Uniqueness of order one periodic solution of system (2) for Case 1.
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Case 2. ID = IS , that is, the point D is exactly the point S.

Select the point D̃(LG, ID̃) which is close to the point S, where ID̃ < IS . Then
the trajectory of the system (2) through point D̃ must intersect the line G = LG

again at a point H̃(LG, IH̃) which is close to the point Q, where 0 < IQ < IH̃ <

IC . The point H̃ is mapped to a point H̃ ′(LG, IH̃′ ) after impulsive effect, where
ID̃ > IH̃′ = IH̃ + σ > IC . Again, the trajectory of the system (2) passing through

point H̃ ′ must intersect the line G = LG at a point H̃1(LG, IH̃1
), and the point

H̃1 is mapped to a point H̃ ′
1(LG, IH̃′

1
) after an impulsive effect of the first kind,

where IH̃′
1

= IH̃1
+σ. Since distinct trajectories do not intersect, we can easily have

0 < IH̃ < IH̃1
< IC < IH̃′ < IH̃′

1
< ID̃ < IS . Because point D̃ is in the phase set,

point H̃ is the impulse point of point D̃ and point H̃ ′ is the successor point of point
D̃, we can get the successor function of point D̃ is F (D̃) = IH̃′ − ID̃ < 0. Besides,
for point H̃ ′ in the phase set, point H̃1 is the impulse point of point H̃ ′ and point
H ′

1 is the successor point of point H ′, so we can get the successor function of point
H̃ ′ is F (H̃ ′) = IH̃′

1
− IH̃′ > 0. By Lemmas 1 and 2, there must exist a point R in

the first phase set which is between the points H̃ ′ and D̃ such that F (R) = 0, thus
the system (2) has an order one periodic solution which makes point R as its phase
point and only undergoes the first kind impulsive effect (refer to the left panel of
Fig. 3).

By similar arguments as Case 1, we can get that the order one periodic solution
is the unique periodic solution of (2) in the region W .

Case 3. ID > IS , that is, the point D lies on the right of point S.

Suppose the trajectory of the system (4) from point S intersects the horizontal
line G = LA + gin at point K and the trajectory from point D intersects the
horizontal line G = LA at point N . Select the point J(LA + gin, IM ) which is the
phase point of point M after the second kind impulsive effect, and the trajectory of
the system (4) passing through point J must intersect the horizontal line G = LG

at two points, then we denote them by F and E, where IF < IC < IE (refer to the
right panel of Fig. 3). Because the point Q is in the first impulse set, so it must
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Fig. 3. Existence of periodic solution of (2) for Cases 2 and 3.
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be mapped to a point Q′(LG, IQ′) after an impulsive effect of the first kind, where
IQ′ = IQ + σ. Based on the position of point Q′, there are the following cases:

(i) IQ′ ≥ IS , that is, the point Q′ lies on the right of or is exactly point S.

Because 0 < IQ < IC , IQ′ = IQ +σ < ID = IC +σ, that is to say, the point Q′ is
between the points S and D (refer to the right panel of Fig. 3). Consider the region
Ω1 encircled by the closed curve �DN ∪ NM ∪�MQ ∪ QF ∪ �FJ ∪ JK ∪�KS ∪ SD.
We can easily know that the region Ω1 is an invariant set of system (2), and we
also call it a Bendixson region. Because Ω1 does not contain any critical points of
system (2), by Lemma 3, there exists a periodic orbit of the system (2) in Ω1.

Obviously, the periodic orbit of the system (2) in Ω1 must undergo two kinds
of impulsive effects.

(ii) IQ′ < IS , that is, the point Q′ lies on the left of point S.

By similar arguments as Case 2, we can get that there must exist a point R in
the first phase set which is between the points Q′ and S such that F (R) = 0, thus
the system (2) has an order one periodic solution which makes the point R as its
phase point and only undergoes the first kind impulsive effect.

To sum up, the system (2) always has periodic solutions in the region W under
the conditions of Theorem 1. That completes the proof.

By similar arguments, although slightly more complicated, we have the following
results for type 2 diabetes. We omit the proof.

Theorem 2. For the case σ1 > 0, if Gs < LA < LA + gin < LG < G∗ and IC < σ,

then the system (2) must have a periodic solution in the region W .

3.2. The attraction region of the system (2)

In this section, we study the attraction region of the system (2). Obviously, we only
need to consider the attraction region of the system with the initial point P (LG, IP )
on the horizontal lines G = LG, where IP > IC .

From the discussion of Cases 1 and 2 in Theorem 1, we know that, when ID ≤ IS ,
system (2) has a unique order one periodic solution in the region W which only
undergoes impulsive effect of the first kind. In the following, we can prove that
there is an attraction region of the system (2) in W for these two cases.

Theorem 3. For the case σ1 = 0 (σ1 > 0), if Gs < LA < LA + gin < LG <

G0 (Gs < LA < LA + gin < LG < G∗) and IC < σ < IC + σ = ID ≤ IS , then the
system (2) has an attraction region in W .

Proof. In the following discussion, for any point A in the first impulse set, we
denote its phase point by A′ and we have IA′ = IA + σ.
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According to Theorem 1, the system (2) has a unique order one periodic solution
that makes the point R(LG, IR) as its phase point, where IH′ < IR < ID.

Consider the successor point H ′ of point D (which is defined in Theorem 1
and refer to Fig. 4), we can easily get IC < IH′ < IR. The trajectory passing
through point H ′ intersects the impulse set again at point H1 which is the impulse
point of H ′, and after undergoing an impulsive effect, point H1 is mapped to point
H ′

1 which is the successor point of H ′. We denote the impulse point of the order
one periodic solution by R′. Because distinct trajectories do not intersect, we have
IH < IR′ < IH1 < IC and IR < IH′

1
< ID.

Similarly, the trajectory passing through point H ′
1 must intersect the impulse

set again at point H2 which is the impulse point of H ′
1, and after an impulsive

effect, the point H2 must be mapped to point H ′
2 which is the successor point of

H ′
1. Then we have IH < IH2 < IR′ and IH′ < IH′

2
< IR.

Repeat the above steps, the trajectory from point D will come across impulsive
effect infinite times. Denote the phase point corresponding to the ith impulsive
effect by H ′

i−1, i = 1, 2, . . . , where H ′
0 = H ′. Then we have

IC < IH′
0

< IH′
2

< IH′
4

< · · · < IH′
2k

< IH′
2(k+1)

< · · · < IR

and

ID > IH′
1

> IH′
3

> IH′
5

> · · · < IH′
2k+1

> IH′
2(k+1)+1

> · · · > IR.

Thus {IH′
2k
}, k = 0, 1, 2, . . . , is a monotonically increasing sequence, and {IH′

2k+1
},

k = 0, 1, 2, . . . , is a monotonically decreasing sequence (see Fig. 4), and furthermore
we suppose,

IH′
2k

→ IR∗ ≤ IR, as k → ∞; and IH′
2k+1

→ IR∗
1
≥ IR, as k → ∞,

where the interval [R∗, R∗
1] can be the single point R.

0G

* ' *
2 1 3 1QHH R R R H H C ' '

2H H ' '
3 1H H D S

AL

GL

0 I

G

M

A inL g

* *
1R R R

Fig. 4. Illustration of the attraction region of the system (2).
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For convenience, the impulse points of points R∗ and R∗
1 are denoted by points

R̄∗ and R̄∗
1 respectively, and obviously, the region Ω0 encircled by the closed curve

R∗R∗
1 ∪�R∗

1R̄
∗
1 ∪ R̄∗

1R̄
∗ ∪�R∗R̄∗ is an invariant set. If point R∗ is exactly point R∗

1,
we know the invariant set Ω0 is exactly the unique order one cycle �RR′ ∪ R′R.

Choose an arbitrary point P0 ∈ H ′R∗, which is different from the point R∗,
and there must exist an integer k such that IH′

2k
< IP0 < IH′

2(k+1)
. The trajectory

from point P0 will also undergo impulsive effect infinite times. We denote the phase
point corresponding to the lth-impulsive effect by Pl, l = 0, 1, 2, . . . , then for any l,
IH′

2(k+l)
< IP2l

< IH′
2(k+l+1)

and IH′
(2k+l+1)+1

< IP2l+1 < IH′
2(k+l)+1

, so {IP2l
}, l = 0, 1,

2, . . . , is also monotonic increasing, and {IP2l+1}, l = 0, 1, 2, . . . , is also monotonic
decreasing, and

IP2l
→ IR∗ , as l → ∞; and IP2l+1 → IR∗

1
, as l → ∞.

Therefore, the successor points of the phase points corresponding to the successive
impulsive effect are attracted to the region Ω0.

By similar discussions, we can get that the trajectory from point P0 ∈ R∗
1D is

also attracted to the region Ω0. Thus the system (2) has an attraction region Ω0 in
the region encircled by the closed curve �DH ∪ HH1 ∪�H1H ′ ∪ H ′D (see Fig. 4).

Besides, for any point A ∈ CH ′, that is, IC < IA < IH′ , after undergoing one
impulsive effect of the first kind, the trajectory of the system (2) from point A must
enter the region encircled by the closed curve �DH ∪ HH1 ∪�H1H ′ ∪ H ′D, then it
will ultimately tend to the region Ω0, so the region Ω0 is an attraction region of
the system (2) in the region encircled by the closed curve �DH ∪ HCD.

According to the discussion in Case 1 of Theorem 1, for any point A(LG, IA),
IA > ID, the trajectory of the system (2) from point A must enter the region encir-
cled by the closed curve�DH ∪HCD after undergoing some impulsive effects of the
two kinds, so it will also ultimately tend to the region Ω0, then the region Ω0 is an
attraction region of the system (2) in the region W . The proof is completed.

Theorem 4. For the case σ1 = 0 (σ1 > 0), if Gs < LA < LA + gin < LG <

G0 (Gs < LA < LA + gin < LG < G∗), IC < σ and IC + σ = ID > IS , then there is
an attraction region of the system (2) in W .

Proof. According to the discussion of Case 3 in Theorem 1 and based on the
position of point Q′ which is the phase point of point Q, there are three cases:

Case 1. IQ′ ≥ IS , that is, the point Q′ lies on the right of or is exactly point S.

In Theorem 1, we have proved that the region Ω1 encircled by the closed curve
�DN ∪NM ∪�MQ ∪QF ∪ �FJ ∪ JK ∪�KS ∪ SD is a Bendixson region and contain
a periodic orbit of the system (2) (refer to the right panel of Fig. 3). We can also
prove that the region Ω1 is the attraction region of the system (2) in W .

Choose an arbitrarily point A ∈ CS. The trajectory of the system (2)
through point A must intersect the line G = LG at a point A1(LG, IA1), where
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IQ < IA1 < IC . The point A1 is mapped to the point A′(LG, IA′) after impulsive
effect, where IQ + σ = IQ′ < IA′ < ID = IC + σ. So the trajectory of the system
(2) through point A will ultimately enter into and remain in the region Ω1.

For any point P (LG, IP ), IP ≥ IS , the trajectory of the system (2) from point P

must intersect the line G = LA without any impulsive effect at some point A1, then
the trajectory from point A1 will enter into and remain in the region encircled by
the closed curve�SMQ∪ QCS after undergoing at least one impulsive effect of the
second kind, that is to say, the trajectory from point A1 will intersect the CS after
undergoing several impulsive effects. So the trajectory of the system (2) through
point P will ultimately enter into and remain in the region Ω1.

To sum up, when IQ′ ≥ IS , the region Ω1 is an attraction region of the system
(2) in W .

By similar arguments as Case 1, we can get the results of the other two cases.
We omit the discussion.

Case 2. IE ≤ IQ′ < IS , that is, the point Q′ is between the points E and S (refer
to the left panel of Fig. 5).

We can get an attraction region of the system (2) in W which is encircled by
the closed curve �DN ∪ NM ∪�MQ ∪ QF ∪�FE ∪ ED.

Case 3. IC < IQ′ < IE , that is, the point Q′ is between the points C and E (refer
to the right panel of Fig. 5).

The trajectory of the system (2) from point Q′ must intersect the line G = LG

without any impulsive effect at some point L. We can get an attraction region of
the system (2) in W which is encircled by the closed curve�DN ∪NM ∪�MQ∪QL∪
�LQ′ ∪ Q′D.

To sum up, there is always an attraction region of the system (2) in W . That
completes the proof.
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Fig. 5. Attraction region of the system (2) for Cases 2 and 3.
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4. Numerical Simulation and Discussion

In this paper, we build a novel semicontinuous dynamics system model to simulate
the therapy for diabetics with artificial pancreas. Compared with system (2.3) pro-
posed in [12], our new model not only considers the control of hyperglycemia but
also avoids the occurrence of hypoglycemia. By a semicontinuous dynamics system,
the insulin delivery and glucagon injection can be modeled by two state-dependent
impulse. This will be potential contributions to the development of the artificial
pancreas.

Because of the complicated pathology of diabetes mellitus, in a lot of elderly
diabetes and critically ill patients, hyperglycemia and hypoglycemia usually show
up at the same time. Equipped with a reliable real-time glucose monitoring system,
artificial pancreas knows the plasma glucose level clearly, and it can give a timely
injection of insulin or glucagon automatically when hyperglycemia or hypoglycemia
occurs. Therefore, artificial pancreas will be the best instrument for the diabetes
therapy in the future. Model (2) provides a robust model with the most important
and critical feature, that is, the timing of injection and what to be injected are
determined by the plasma glucose level read from an accurate glucose monitor.
Researchers for artificial pancreas are widely agreed that for each model, we should
get a better understanding of strength and weakness in validating different control
algorithms [22] and develop clinical applicable controls. In this section, we apply
Model (2) under a few typical clinical situations and study the simulation results.

The parameter values in our simulations are chosen and adjusted from [7, 13–
15, 17, 18, 23, 25] (refer to Table 1). Just like [12–14], unit conversion is also made
in our simulation.

For the artificial pancreas with closed-loop approach, our theoretical results
(Theorems 1 and 2) ensure that the system must exist a positive periodic solution,
whether for type 1 or type 2 diabetes (see Figs. 6 and 7). Compare Fig. 6 with Fig. 7,
we find that under the same treatment conditions, type 1 diabetes need much more
exogenous insulin injection than type 2 diabetes to keep the plasma glucose level
under control. Within 500 minutes, the glucose concentration reaches to 190mg/dl
(the predefined threshold level to avoid hyperglycemia) twice for type 2 diabetes
while eight times for type 1 diabetes. This is mainly because the pancreas of type 2
diabetes can still release some insulin to uptake glucose, but type 1 diabetes are
completely dependent on exogenous insulin.

Table 1. Model parameter values from [12].

Parameters Values Units Parameters Values Units

Gin 216 mg/min m 900 mg/min
b 100 mg/min n 80 mg

σ2 5 × 10−6 min−1 σ1 6.27 mU/min
a 3 × 10−5 mg−1 α1 105 mg
c 40 mg/min di 0.08 min−1
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Fig. 6. Positive periodic solutions of Model (2) for type 1 diabetes (σ1 = 0) with σ = 1U,
gin = 10 mg/ml, LG = 190 mg/dl and LA = 60 mg/dl.
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Fig. 7. Positive periodic solutions of Model (2) for type 2 diabetes (σ1 = 6.27) with σ = 1U,
gin = 10 mg/ml, LG = 190 mg/dl, and LA = 60mg/dl.

According to Fig. 8, when we set the insulin injection dose suitable enough, the
periodic solution may be orbitally asymptotically stable. Even though the orbitally
asymptotic stability cannot be obtained, the plasma glucose concentration can be
always remained in an ideal range by Theorems 3 and 4.
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Fig. 8. Comparison of the profiles produced by Model (2) with different initial glucose levels.

Just like we had done in [12], we study the insulin injection strategies for a
patient equipped with artificial pancreas. We set the delivery impulse at different
intervals but at the same total daily dose, compare the profiles and then can get a
similar conclusion: for the same daily total dose, the impulsive injection with larger
dose but longer period is more effective to control hyperglycemia than the injection
with smaller dose but shorter period (refer to Fig. 9). This can provide significant
guidance in the algorithm design of the artificial pancreas.

The parameter values in Table 1 are initially adjusted from [23, 25] which mainly
study the glucose–insulin regulatory system of healthy people, and they obtained
their data from experiments. But for severe diabetics, especially the critically ill
patients in ICU, who are often sedated and in a highly monitored state, they are
extremely diverse in the causes and dynamics of their hyperglycemia and very small
amounts of glucose input can cause significant response to their plasma glucose and
insulin levels [8]. So the glucose exogenous infusion rate for critically ill patients
should also be sharply reduced. Besides, the insulin degradation rate may also
change greatly. We perform a group of numerical simulations to research the therapy
for severe diabetics with an artificial pancreas.

According to Fig. 10, we find that for type 1 diabetics, if his insulin degradation
rate becomes far below normal while he still must reduce the glucose intake to a very
low level because of the risk of hyperglycemia, he may suffer from hyperglycemia
and hypoglycemia at the same time. When an artificial pancreas is equipped, the
timely injections of insulin and glucagon help the patient to adjust his glucose level
to a safe range.

However, for severe diabetics of type 2, if the insulin degradation rate becomes
low enough, the glucose–insulin regulatory system itself can restore his plasma
glucose concentration to safe level, both insulin and glucagon injections are not
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Fig. 9. Comparison of the profiles produced by Model (2) with different doses controlled
by a pre-set threshold level of glucose concentration.
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Fig. 10. Positive periodic solutions of Model (2) for type 1 diabetes (σ1 = 0) with Gin =
10 mg/min, di = 0.01 min−1, σ = 1U, gin = 10mg/ml, LG = 190mg/dl and LA = 60mg/dl.
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Fig. 11. Positive periodic solutions of Model (2) for type 2 diabetes (σ1 = 6.27) with di =
0.01 min−1, σ = 1U, gin =10 mg/ml, LG = 190 mg/dl and LA = 60mg/dl.

needed (see Fig. 11 when Gin = 216mg/min). In this case, if the patient reduces
the glucose infusion blindly, hypoglycemia may occur (see Fig. 11 when Gin =
10mg/min). This also suggests that, for type 2 diabetics, medicine studies and
practice that slow down the insulin degradation are helpful for the plasma glucose
control.
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