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a b s t r a c t

A kind of cylindrical dynamic system with impulsive state feedback control is formulated
and investigated. Based on the qualitative properties of the corresponding continuous
system, the existence of order-k (k ∈ Z+) periodic solutions of the cylindrical dynamic
system with impulsive state feedback control is discussed on the cylinder with perimeter
2π . If the equilibrium of the corresponding continuous system in the rectangle coordinate
system is an unstable node, then the cylindrical dynamic system has two one-side stable
minimum limit sets. If the equilibrium is an unstable focus, then, for different parameters,
the cylindrical dynamic system has the periodic solutions with different periods and
different orders. Finally, numerical simulations are given to verify the theoretical results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the development and management process of biological species, the implementations of some control measures
depend on the state of target species, that is, only when the population or density of the target species reaches a certain
threshold (e.g., economic threshold, ET), the corresponding control measures are implemented. Otherwise, no control
measure is taken. This kind of control is known as state feedback control. Because those control measures have the
characteristics of pulse-like actions, they are also called impulsive state feedback control. Since the impulsive state feedback
control can be widely used in many biological systems and the differential equations with impulsive state feedback control
can provide a natural description of the pulse-like actions, the differential equation with impulsive state feedback control
receives more and more attention of researchers engaged in the study of biomathematics and other fields.

The autonomous differential equation with the term of impulsive state feedback control was called impulsive semi-
dynamic system in Ref. [1] and some abstract properties (e.g., limit set) were given there. In the past years, the application
of impulsive semi-dynamic system in the fields of biomathematics mainly focused on the models of pest control, microbial
cultivation and disease control, the geometric properties of solution of these impulsive semi-dynamical systems were
investigated clearly. For example, Refs. [2–5] studied the state-dependent impulsive systems of integrated pestmanagement
(IPM) strategies and gave the corresponding dynamic consequences. By using the method of bifurcation, Refs. [6,7] studied
the impulsive state feedback control of prey–predator system and gave the existence and stability of order-1 periodic
solution. Whereafter, various of prey–predator systems with impulsive state feedback control were investigated.

In the control process of microorganism culture, a turbidostat is an apparatus with feedback control system used to
continuously culturing microorganisms. The dilution rate of the turbidostat can be regulated by the control system when
the concentration of microorganism, detected by photoelectricity system or other devices, reaches a preset value. Based
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on the design ideas of the turbidostat, the differential equation with impulsive state feedback control was proposed in
Refs. [8–10] and investigated by the existence criteria of periodic solution of a general planar impulsive autonomous system
which generalized the Poincaré–Bendixson theorem [11], the conditions for the existence of order-1 periodic solution were
obtained according to the preset value and the types of positive equilibrium of the corresponding continuous system.
For different kinds of microorganism cultures, various differential equations with impulsive state feedback control were
formulated and investigated, see Refs. [12–15].

For the disease control, Ref. [16] proposed two mathematical models with impulsive injection of insulin or its analogues
for type 1 and type 2 diabetes mellitus. Onemodel incorporated the periodic impulsive injection of insulin. The other model
determined the insulin injection by closely monitoring the glucose level. The existence and stability of order-1 periodic
solution were proved to explain that the perturbation by the injection in such an automatedway can keep the blood glucose
concentration under control.

With the application and further research of impulsive semi-dynamical system in the fields of biomathematics, some
new geometric properties were found, then Ref. [17] summarized the characteristics of the biological dynamic systemswith
impulsive state feedback control and called it semi-continuous dynamic system. The definitions and preliminary research
methods of semi-continuous dynamic systemwere given in Ref. [17]. Most of early researches on the biological systemwith
impulsive state feedback control considered that the implementation of controlmeasure only depends on one target species
and the function of impulsive condition only involves one variable (see Refs. [18,19] and the papers mentioned above). But
in some habitats where the resources (e.g., food, space) are limited, when the total population of the species in the habitat
reaches a certain threshold, the resources will become scarce and cannot meet the need of the species to survive. At this
time, some controlmeasures, aiming at all the species in the habitat, not a single special species, should be taken tomaintain
the growth of all the species. To describe this kind of control condition, the function of impulsive condition will involve two
or more variables.

The references mentioned above consider that the impulsive conditions are linear functions with one variable. From the
geometry point of view, most of them are either the horizontal straight lines or the vertical lines in the plane. But there is
few paper to discuss the case inwhich the function of impulsive condition is quadratic. This paperwill formulate and discuss
a kind of linear species system in which the function of impulsive condition is quadratic and its geometric curve is a circle,
which can be considered as the reference to discuss the nonlinear biological systems in which the functions of impulsive
conditions are also quadratic.

On the other hand, the differential systems given in the references mentioned above do not involve the cylindrical
dynamic system. To use the existing knowledge of linear impulsive condition, this paper will formulate a kind of linear
system and transform it into a cylindrical system with perimeter 2π by polar transformation, and then mainly investigate
the geometric properties of solution of cylindrical system with impulsive state feedback control.

The rest of this paper is organized as follows. In Section 2, we will introduce a continuous system which can be
viewed as a predator–prey system, and its semi-continuous system with impulsive state feedback control in the rectangle
coordinate system. By polar transformation, the semi-continuous cylindrical system with impulsive state feedback control
is formulated. The qualitative properties of the corresponding continuous system are given in Section 3. Section 4 will show
that the semi-continuous cylindrical system has order-k (k ∈ Z+) periodic solutions with different periods and different
orders as the parameter changes. The orbit stability of periodic solution is discussed in Section 5. Numerical simulations and
discussions are given in Section 6.

2. Model formulation

Suppose that there are two species in a habitat where the food resource is limited. Denote the populations of the species
by x(t) and y(t) at time t , respectively. For simplicity, let x = x(t) and y = y(t). Suppose that the species y has the negative
effect on the species x and decreases the growth rate of the species x, but the species x can increase the growth rate of the
species y. The relations and evolution process of two species can be described by the following system:

dx
dt

= −y + δx,

dy
dt

= x,
(2.1)

where δ ≥ 0 represents the immigration rate of species x from the outside of the habitat. System (2.1) can be viewed as
a simple prey–predator system. It can be easily obtained that equilibrium O(0, 0) of system (2.1) is a center for δ = 0, an
unstable focus for 0 < δ < 2 and an unstable node for δ ≥ 2.

From these results, we know that the population of two species x and y tend to infinite, that is, x → +∞ and y → +∞

as t → ∞ for δ > 0. But the food is limited, the populations of two species will decrease even tend to zero after the total
population reaches a certain threshold because of the lack of food. At this time, some control measures should be taken.

We suppose that the threshold satisfies

x2 + y2 = r1, 0 < r1 and the initial state is


x20 + y20 < r1 where x0 and y0 are

the initial values of x and y at the initial moment t = t0. As the time t increases and the point moves along the trajectory
of system (2.1), if x and y satisfy


x2 + y2 = r1, then some control measures can be taken and suppose that the control
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(a) 0 < δ < 2. (b) δ > 2.

Fig. 1. Sketch map of the trajectory, the impulsive set and its image set of system (2.2).

measures make the populations of two species decrease to

x2 + y2 = r2, 0 < r2 < r1 where r1 and r2 are the finite real

numbers. Furthermore, we have the following system:

dx
dt

= −y + δx,

dy
dt

= x,


x2 + y2 < r1,

1r = −r,

x2 + y2 = r1

r0 =


x20 + y20 < r1,

(2.2)

where 1r = −r = r2 − r1 =


(x+)2 + (y+)2 −

x2 + y2 and

x+
= x(t+k ) = lim

h→0+
x(tk + h), y+

= y(t+k ) = lim
h→0+

y(tk + h).

Here, 1r = −r is called the impulsive function which can also be written as r+
= r1 − r = r2.


x2 + y2 = r1 is

called the function of impulsive condition, which is of circle type [20],M ′
= {(x, y)|


x2 + y2 = r1} is the impulsive set and

N ′
= {(x, y)|


x2 + y2 = r2} is the image set of the impulsive setM ′, they are bounded.

The trajectory, the impulsive set and its image set of system (2.2) can be seen in Fig. 1, where the circle with radius r = r1
is the impulsive set and the circlewith radius r = r2 is the image set of the impulsive set. Fig. 1(a) gives the case of 0 < δ < 2
in which the equilibrium O(0, 0) of system (2.1) is an unstable focus. Fig. 1(b) is the case of δ > 2 in which the equilibrium
O(0, 0) is an unstable node. It is easily known that the annular region A between two circles (r2 ≤


x2 + y2 ≤ r1) is the

invariant set of system (2.2).
To use the existing knowledge of linear impulsive conditions, we transform the function of impulsive condition
x2 + y2 = r1 into r = r1 by polar transformation x = r cos θ and y = r sin θ . After polar transformation, systems

(2.1) and (2.2) become the following systems
dr
dt

= δr cos2 θ,

dθ
dt

= 1 − δ sin θ cos θ,

(2.3)

and 

dr
dt

= δr cos2 θ,

dθ
dt

= 1 − δ sin θ cos θ,

 r < r1,

1r = −r,
1θ = 0,


r = r1,

r0 < r1.

(2.4)

For system (2.4), the impulsive function is 1r = −r (or r+
= r1 − r = r2) and 1θ = 0, the function of impulsive

condition is r = r1, the impulsive set is M = {(θ, r)|r = r1} and its image set is N = {(θ, r)|r = r2}, they are bounded.
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Fig. 2. Different trajectories of system (2.3) for different δ.

Generally, systems (2.3) and (2.4) can be viewed as polar equations where r = r(t) is the polar radius, θ = θ(t) is the polar
angle, r = 0 corresponds to the equilibrium O(0, 0) of system (2.1).

Since the right-hand functions of system (2.3) are periodic solutions of period 2π with respect to θ , if the lines θ = 0
and θ = 2π are glued together, then a cylinder S1 × R1 with perimeter 2π can be formed in the rectangle coordinate
system, furthermore, system (2.3) can be considered as a cylindrical dynamic system . Therefore systems (2.3) and (2.4) can
be investigated on the cylinder which is a strip region in the rectangular coordinate system. The strip region parallels to the
r-axis and its width is 2π .

In the following, the existence of order-k (k ∈ Z+) periodic solution of system (2.4) will be discussed in the phase plane
of rectangular coordinate system. The definitions of order-k (k ∈ Z+) periodic solution can be found in Appendix A.

3. Qualitative analysis of system (2.3)

If δ = 0, then system (2.3) is of center type. If we regard system (2.3) as a polar system, then the trajectories of system
(2.3) are closed. If we regard it as a rectangular coordinate system, then the trajectories are the horizontal lines paralleling
to the θ-axis for δ = 0 (see Fig. 2). With the value of parameter δ increasing from 0, the trajectories become the curves and
r → ∞ as t → ∞. In the following, we will discuss the properties of solution of system (2.3) in the plane of rectangular
coordinate and first consider the case of θ ∈ [0, 2π ] (see Fig. 2).

From the second equation of system (2.3), it follows that sin(2θ) =
2
δ
if 1 − δ sin θ cos θ = 1 −

1
2δ sin(2θ) = 0, which

implies that system (2.3) has no asymptotic direction for 0 < δ < 2 since 2
δ

> 1.
If δ ≥ 2, then from sin(2θ) =

2
δ
we can obtain that θ1 =

1
2 arcsin

 2
δ


and θ2 =

1
2 arcsin

 2
δ


+ π . In particular, if δ = 2,

then θ1 =
π
4 and θ2 =

5π
4 . Here, θ1 and θ2 correspond to two asymptotic directions of system (2.3).

On the other hand, it can be obtained from system (2.3) that

dr
dθ

=
δr cos2 θ

1 − δ sin θ cos θ
=

δr
tan θ −

δ
2

2
+


1 −

δ2

4

 . (3.1)

Let g(θ) = (tan θ −
δ
2 )

2
+ (1 −

δ2

4 ). If δ ≥ 2, then it follows from g(θ) = 0 that

θ = arctan


δ

2
±


δ2

4
− 1


= arctan


1
2
(δ ±


δ2 − 4)


.

Therefore, there also exist two asymptotic directions θ∗

1,2 = arctan( 1
2 (δ ±

√
δ2 − 4)) ∈ [0, 2π ] along which dr

dθ tends to
infinity. It can be proved that θ∗

1 = θ1 and θ∗

2 = θ2 (see Appendix B).
If δ < 2, since g(θ) ≠ 0, then dr

dθ exists and is bounded. In particular, g(θ) → ∞ and dr
dθ → 0 for θ =

π
2 . Therefore,

we know that dr
dθ decreases from δr to 0 for θ ∈ [0, π

2 ], increases from 0 to δr for θ ∈ [
π
2 , π], decreases from δr to 0 for

θ ∈ [π, 3π
2 ] and then increases from 0 to δr for θ ∈ [

3π
2 , 2π ] (see Fig. 3). Fig. 3 gives the illustrations of the trajectories of

system (2.3) with parameter δ and the initial value of θ varying.

4. Qualitative analysis of system (2.4)

In the following, wewill discuss the geometric properties of solution of system (2.4) with parameter δ varying. According
to the above analyses, when δ = 0, all the trajectories of system (2.4) are the horizontal lines in the (θ, r)-plane of
rectangular coordinate and the impulsive effect does not occur for r < r1. Therefore, we will discuss the following two
cases of δ ≥ 2 and 0 < δ < 2 for the initial value r0 < r1.



102 H. Guo et al. / Nonlinear Analysis: Hybrid Systems 15 (2015) 98–111

(a) Different values of parameter δ. (b) Different initial values of θ .

Fig. 3. Illustration of system (2.3) with the parameter δ and the initial value of θ varying.

Fig. 4. Sketch map of the trajectories of system (2.4) for δ ≥ 2.

4.1. Case δ ≥ 2

Theorem 4.1. System (2.4) has two one-side stable ω-limit sets for θ ∈ [0, 2π ] if δ ≥ 2.

Proof. If δ ≥ 2, then the equilibriumO(0, 0) of system (2.1) (corresponding to the point r = 0 of system (2.3)) is an unstable
node. Regard (θ, r) as the point of rectangular coordinate, see Fig. 4.Without loss of generality, let the initial point be (0, r2).
Denote the trajectory starting from (0, r2) by l. Since dr

dt > 0, dθ
dt > 0 and δ ≥ 2, as the time t increases from the initial

moment t0 and the point moves from (0, r2), there exists a moment t1 such that the point along the trajectory l reaches
A1(θ1, r1) where θ1 = θ(t1), then jumps to B1(θ

+

1 , r2) under the impulsive effect where θ+

1 = θ(t+1 ) (see Fig. 4). Sequently,
it continues to move starting from B1(θ

+

1 , r2) and reaches A2(θ2, r1) at the moment t = t2, θ2 = θ(t2), then jumps from
A2 to B2(θ

+

2 , r2) under the impulsive effect where θ+

2 = θ(t+2 ). Repeating the process all the time as the time t increases,
the sequences {Ak(θk, r1)} ∈ M and {Bk(θ

+

k , r2)} ∈ N, k = 1, 2, . . . can be obtained, where θk = θ(tk), θ+

k = θ(t+k ), the
corresponding moments are {tk} and {t+k }, k = 1, 2, . . . , respectively [1].

Since dr
dθ = +∞ for θ = θ∗

1 where θ = θ∗

1 is the asymptotic line, then θk → θ∗

1 , k = 1, 2, . . . as t → ∞.
Furthermore, Ω1 = {(θ, r)|θ = θ∗

1 , r2 ≤ r ≤ r1} is an ω-limit set of system (2.4). Since the trajectory starting from
the point (θ∗

1 + ϵ, r2), ϵ is sufficiently small, repeat the above process for θ > θ∗

1 , then there also exists an ω-limit set
Ω2 = {(θ, r)|θ = θ∗

1 + π, r2 ≤ r ≤ r1}.
For arbitrary ϵ1 > 0, η > 0, let η1 = ϵ1, suppose that the initial moment is t0, (θ0, r) is the arbitrary initial point in the

region where r < r1, θ0 < θ∗

1 , θ0 ∉ Bη(θ(tk))


Bη(θ(t+k )), |t0 − tk| > η, |θ − θ∗

1 | < η1, Bη(θ(tk)) is the η-neighborhood
of θ(tk), k = 1, 2 · · ·, where tk is the impulsive moment. From dr

dt > 0 and dθ
dt > 0, we know that the trajectory starting

from the point (θ0, r) tends to the line θ = θ∗

1 from the left side and does not intersect with the line θ = θ∗

1 , which implies
that ρ((θ, r), Ω1) = inf |θ − θ∗

1 | < ϵ1 for t > t0 where ρ((θ, r), Ω1) is the distance from the point (θ, r) to the limit set
Ω1. Similarly, the stability of the limit set Ω2 can be discussed. Therefore, according to the definition of orbit stability (see
Appendix C), we know that system (2.4) has two one-sided stableω-limit sets for θ ∈ [0, 2π ]. This completes the proof. �



H. Guo et al. / Nonlinear Analysis: Hybrid Systems 15 (2015) 98–111 103

Fig. 5. Sketch map of trajectories of system (2.4) for 0 < δ < 2.

Let us consider Fig. 1 once again, obviously, the annular region A in Fig. 1 is the invariant set of system (2.4) (or (2.2)) but
not the minimum limit set. In Fig. 1(b), the minimum limit set is the segments ab and cd which lie on the asymptotic lines
(θ = θ∗

1 and θ = θ∗

2 ) and between two circles (r = r1 and r = r2).

4.2. Case 0 < δ < 2

Theorem 4.2. There exists a δ1(0 < δ1 < 2) such that system (2.4) has an unique order-1 periodic solution of period 2π with
respect to θ for δ = δ1.

Proof. From system (2.3), it follows that

dr
dθ

=
δr cos2 θ

1 − δ sin θ cos θ
=

r cos2 θ
1
δ

− sin θ cos θ
. (4.1)

From Eq. (4.1), we know that dr
dθ is a strictly monotone increasing function with respect to parameter δ and has no

asymptotic direction for 0 < δ < 2.
Since system (2.3) has an asymptotic direction θ∗

1 (θ∗

1 =
π
4 ) for δ = 2. Without loss of generality, denote the first

intersection point of the trajectory l starting from the point (0, r2) and the line r = r1 by A for δ = 2 (see Fig. 5). It is easy to
know that θA < π

4 for δ = 2 where θA is the value of θ at the point A.
Denote the first intersection point of the trajectory l and the line r = r1 by Jr for 0 < δ < 2. According to the continuous

dependence of solution on parameters, if θJr > θA, that is, the point Jr lies on the right side of the line θ =
π
4 , then we know

that the corresponding parameter δ is less than 2.
From the above discussions, we know that the trajectories are horizontal for δ = 0. Denote the first intersection point of

the trajectory l and the line θ = 2π by Jθ for 0 < δ < 2. As parameter δ is increased gradually, according to the continuous
dependence of solution on parameters, it follows that Jθ moves from down to up, then there must exist a δ1 such that the
trajectory l intersects with the line θ = 2π at the point (2π, r1), which implies that system (2.4) has an order-1 periodic
solution for δ = δ1 and the period with respect to θ is 2π . This completes the proof. �

Theorem 4.3. For 0 < δ < 2, system (2.4) has an order-k (k ≥ 2, k ∈ Z+) periodic solution of period 2π with respect to θ for
θ ∈ [0, 2π ] where order k is finite.

Proof. From Theorem4.2, we know that system (2.4) has an order-1 periodic solution for δ = δ1 and the periodwith respect
to θ is 2π . The intersection point Jr coincideswith the point (2π, r1) (see Fig. 5). As the value of δ increases, the point Jr moves
from right to left along the line r = r1.Without loss of generality, suppose that for a δ (δ > δ1), at a certainmoment, the point
moving along the trajectory l starting from (0, r2) hits the impulsive set r = r1 at the point Jr(θ1, r1), θ1 < 2π . Obviously,
Jr lies on the left of the point (2π, r1) since δ > δ1. Under the impulsive effect, the point jumps to (θ+

1 , r2) and then moves
from the point (θ+

1 , r2). Let J ′θ be the intersection point of the trajectory l and the line θ = 2π , if J ′θ coincides with the point
(2π, r1), then system (2.4) has an order-2 periodic solution. If the point J ′θ lies down the point (2π, r1), then the value of δ
can be increased continuously and the point J ′θ moves from down to up. Further, there must exist a δ (δ < 2) such that (2.4)
has an order-2 periodic solution since θ =

π
4 is the asymptotic line for δ = 2. Therefore, we can denote the value of the

parameter δ by δ2 for which system (2.4) has an order-2 periodic solution (see Fig. 6).
If δ2 < 2, then the similar discussions can be continued and system (2.4) has an order-k periodic solution for the

corresponding parameter δ = δk (δk < 2, k ≥ 2).
Suppose that system (2.4) has an order-k (k ≥ 2) periodic solutionl. The increment of θ is 1θ1 whenl firstly reaches the

line r = r1 from the line r = r2, and then the increments of θ in every impulsive interval are 1θ2, . . . , 1θk, respectively.
The trajectory starting from the image point (on the line r = r2) of (k − 1)th impulsive point reaches the point (2π, r2)
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Fig. 6. The existence of order-k (k ≥ 2) periodic solution of period 2π with respect to θ in [0, 2π].

Fig. 7. The existence of order-1 periodic solution of period 2uπ with respect to θ in [0, 2uπ ], u ∈ Z+ .

after θ undergoes the increment 1θk. If the order k is infinite, that is, k = ∞, then there at least exist an interval such that
1θi → 0 and dr

dθ → ∞. But system (2.4) has no such asymptotic direction for 0 < δ < 2 and the values of dr
dθ at every point

are finite. Therefore, the order k is finite for θ ∈ [0, 2π ]. This completes the proof. �

4.3. Order-k periodic solution of longer period with respect to θ

From Theorems 4.2 and 4.3, we know that system (2.4) has order-k periodic solution and the number of order k is finite
and k ≥ 1 for θ ∈ [0, 2π ]. Suppose that the order-i periodic solutions correspond to the parameters δi, i = 1, 2, . . . , k for
θ ∈ [0, 2π ], respectively, and 0 < δ1 < δ2 < · · · < δk < 2.

For δ ∈ (0, δ1) ∪ · · · ∪ (δk−1, δk) ∪ (δk, 2) or δ ∈ (0, 2) − {δ1, δ2, . . . , δk}, the existence of periodic solution need to
consider in longer intervals such as [0, 4π ], [0, 6π ], . . . . There are two cases:

Case 1. δ ∈ (0, δ1)
According to the above assumptions and Theorem 4.1, there exists a δ1 such that system (2.4) has an order-1 periodic

solution of period 2π with respect to θ for δ = δ1 and θ ∈ [0, 2π ]. When δ < δ1, the trajectory l intersects with the line
θ = 2π at the point C(2π, r), r2 < r < r1 (see Fig. 6), it is clear that system (2.4) has no periodic solution for θ ∈ [0, 2π ].
From the continuous dependence of solution on parameters, we know that the intersection point C(2π, r) moves from up
to down as δ decreases, then there must exist a β1(β1 < δ1) such that the trajectory l intersects with the line θ = 4π
at the point A2(4π, r1) for δ = β1. Furthermore, there is an order-1 periodic solution of period 4π with respect to θ for
δ = β1 < δ1 (see Fig. 7).

Similarly, if δ < β1, then there exists a β2(β2 < β1) such that system (2.4) has an order-1 periodic solution of period
6π with respect to θ for δ = β2. The same discussions can be continued and system (2.4) has order-1 periodic solutions of
period 2uπ, u ∈ Z+ with respect to θ .

Case 2. δ ∈ (δ1, δ2) ∪ · · · ∪ (δk−1, δk) ∪ (δk, 2)
For δ ∈ (δi, δi+1), i = 1, 2, . . . , k − 1 or δ ∈ (δk, 2), the trajectories are similar to that given in Fig. 8. The trajectory

l intersects with the line θ = 2π at the point A1(2π, rA1), r2 < rA1 < r1 after i times impulsive effects. As θ increases,
the trajectory l intersects with the line θ = 4π at the point A2(4π, rA2). It is clear that there are i and δi1(δi1 ∈ (δi, δi+1))
such that rA2 |θ=2π = r1, then for this δi1, there exists a periodic solution of period 4π with respect to θ , and its order is
2i + 1. If rA2 ≠ r1, then rA2 > rA1 , and the similar discussion can be continued, there must exist a δiu and the interval
θ ∈ [0, 2uπ ], u ∈ Z+ such that rAu = r1, which means that there is a periodic solution. The order is 2ui + 1 and the period
with respect to θ is 2uπ .
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Furthermore, for δ ∈ (0, δ1) ∪ · · · ∪ (δk−1, δk) ∪ (δk, 2), there exist δ11, δ21, . . . , δk1 such that system (2.4) has an order-
(2i + 1) periodic solution in every corresponding parameter interval.

4.4. Maximum period and maximum order for θ ∈ R+

Suppose that system (2.4) has a periodic solutionwithmaximumorder andmaximumperiodwith respect to θ for θ ∈ R+

and 0 < δ < 2. Firstly, suppose that the maximum order is k, k ∈ Z+, the corresponding parameter is δ = δk < 2 and
the period with respect to θ is 2uπ, u ∈ Z+. Since δ = δk < 2, then for δ ∈ (δk, 2), system (2.4) has no periodic solution
in the interval θ ∈ [0, 2uπ ], u ∈ Z+. According to the above discussions, we know that there is a δ (δ ∈ (δk, 2)) such that
system (2.4) has order-(2k + 1), k ∈ Z+ periodic solution in the longer interval (e.g., θ ∈ [0, 2(u + 1)π ], u ∈ Z+), which is
a contradiction.

Secondly, suppose that system (2.4) has an order-1 periodic solution with maximum period 2u1π, u1 ∈ Z+ with
respect to θ and the corresponding parameter δ = δ1. But for δ ∈ (0, δ1), system (2.4) has no order-1 periodic solution
in θ ∈ [0, 2u1π ], u1 ∈ Z+. Similarly, the order-1 periodic solution will exist in the longer interval, which also concludes a
contradiction. Therefore, we have the following proposition.

Proposition 4.1. System (2.4) has no periodic solution with maximum period and maximum order for θ ∈ R+ and 0 < δ < 2.

Remark 4.1. Let us consider system (2.4) in the polar coordinate system (see Fig. 1). Since every trajectory of system (2.4)
starting the points in the regionwhere r < r1 will hit the circle r = r1, it is sufficient to consider only the trajectories starting
from the point on the circle r = r2. For arbitrary θ = θ0, the trajectory starting from the point (θ0, r2) reaches the point
(θ1, r1) where θ1 = θ0 + ∆1 and the impulsive effect switches it to (θ+

1 , r1). Then the motion continues along the trajectory
until it hits the circle r = r1 again at the point (θ2, r1) where θ2 = θ1 + ∆2 = θ0 + ∆1 + ∆2. It is easy to see that after the
kth encounter, the existence of order-k (k ∈ Z+) period solution is to consider the point (θk, r1) where θk = θ0 + ∆ and
∆ = ∆1 + ∆2 + · · · + ∆k. Therefore, in order to study the motion, it is sufficient to consider the distribution of all points
θk = θ0 + ∆ (see Ref. [20]).

If ∆

2π is a rational number, that is, ∆ = 2π(p/q) where p and q are positive integers relatively prime to each other, then
θq = θ0 + ∆1 + · · · + ∆q = θ0(mod 2π). Thus the trajectory is an order-q periodic solution (see Ref. [20]).

Suppose that ∆

2π is not a rational number. Dividing the circle r = r1 into n equal arcs and the length of each arc is 2π
n .

Since ∆

2π is not rational, then it never happens that θk = θ0(mod 2π). Among the first (n+ 1)th points θ0, θ1, . . . , θn, where
θn = θ0+∆1+· · ·+∆n, there are at least two points on the same arc, say (θm, r1) and (θl, r1)where θm = θ0+∆1+· · ·+∆m
and θl = θ0 + ∆1 + · · · + ∆l,m > l and let s = m − l. The increments ∆ml = (∆l+1 + · · · + ∆m)(mod 2π) is less than
2π
n . Let ϵ > 0 be arbitrary and for n sufficiently large, we can obtain that 2π

n < ϵ. Furthermore, in any ϵ-neighborhood of
any point on the circle r = r1, there is at least one element of the set {θ0 + ∆ml}, which implies that the trajectories starting
from the point in the region where r < r1 are everywhere dense in the annulus where r2 < r < r1 (i.e. the trajectories fill
up the annulus densely).

5. Orbit stability of periodic solution

Lemma 5.1 (Analogue of Poincaré Criterion [20,21]). The T-periodic solution x = ξ(t), y = η(t) of the system

dx
dt

= P(x, y),

dy
dt

= Q (x, y),
φ(x, y) ≠ 0,

1x = a(x, y),
1y = b(x, y), φ(x, y) = 0

(5.1)

is orbitally asymptotically stable and enjoys the property of asymptotic phase if the multiplier µ2 satisfies the condition |µ2| < 1,
where

µ2 =

q
k=1

∆k exp
 T

0

∂P
∂x

(ξ(t), η(t)) +
∂Q
∂y

(ξ(t), η(t))dt


,

∆k =

P+


∂b
∂y

∂φ

∂x −
∂b
∂x

∂φ

∂y +
∂φ

∂x


+ Q+


∂a
∂x

∂φ

∂y −
∂a
∂y

∂φ

∂x +
∂φ

∂y


P ∂φ

∂x + Q ∂φ

∂y

.

P,Q , ∂a
∂x ,

∂a
∂y ,

∂b
∂x ,

∂b
∂y ,

∂a
∂x ,

∂φ

∂x ,
∂φ

∂y are calculated at the point (ξ(τk), η(τk)), and P+ = P(ξ(τ+

k ), η(τ+

k )), Q+ = Q (ξ(τ+

k ),

η(τ+

k )).
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Fig. 8. The existence of order-k periodic solution of system (2.4) in the interval [0, 4π ].

Suppose that system (2.4) has an order-kT -periodic solution (θ(t),r(t)) of period 2uπ with respect to θ, k, u ∈ Z+, its
period with respect to the time is T . Denote the initial moment by τ0, the impulsive moments by τ1, τ2, . . . , τk, at which the
trajectory l hits the line r = r1. It easily follows that T = τk and θ(τk) = θ(τ0 + T ) = 2uπ . From Lemma 5.1 and Ref. [20],
we can obtain that

∂b
∂θ

= 0,
∂φ

∂r
= 1,

∂b
∂r

= 0,
∂φ

∂θ
= 0,

∂a
∂r

= 0,
∂a
∂θ

= 0,

∂P
∂r

(θ(t),r(t)) = δ cos2(θ),
∂Q
∂θ

(θ(t),r(t)) = −δ(2 cos2(θ) − 1),

∆k =
P+

P
=

δr+ cos2(θ+)

δr cos2(θ)
=
r+r =

r2
r1

,

exp
 τi+1

τi

∂P
∂r

(θ(t),r(t)) +
∂Q
∂θ

(θ(t),r(t))dt = exp
 τi+1

τi

δ(1 − cos2(θ))dt


, i = 0, 1, 2, . . . , k − 1.

From the first equation of system (2.4), we have that dr
r = δ cos2(θ)dt . Thus, it follows that

µ2 =


r2
r1

k

exp
 T

0
δ(1 − cos2(θ)(t))dt


=


r2
r1

k+1

exp(δT ).

From Lemma 5.1, it is easily to know that |µ2| < 1 if


r2
r1

k+1
exp(δT ) < 1. Therefore, we have the following proposition.

Proposition 5.1. If system (2.4) has an order-kT-periodic solution (θ(t),r(t)) of period 2uπ with respect to θ, k, u ∈ Z+, then
the periodic solution is orbitally asymptotically stable and enjoys the property of asymptotic phase if

r2
r1

k+1

exp(δT ) < 1.

6. Numerical simulations and conclusions

From the discussions in Section 4, we know that the solutions of system (2.4) (corresponding to system (2.2)) have
different geometric properties for different parameters δ. System (2.4) has two one-side stable ω-limit sets for θ ∈ [0, 2π ]

if δ ≥ 2. For 0 < δ < 2, we know from Remark 4.1 that system (2.4) has order-q periodic solution if the increment ∆

2π
is a rational number, that is, ∆ = 2π(p/q) where p and q are positive integers relatively prime to each other. If ∆

2π is not
a rational number, then the trajectories starting from the point in the region where r < r1 are everywhere dense in the
annulus where r2 < r < r1.

In order to verify those theoretical results, we let r1 = 2, r2 = 1. For δ > 2, the numerical simulations can be seen in
Fig. 9 where (a) and (b) are the phase portraits of cylindrical coordinates and the polar coordinates, respectively. From Fig. 9,
we can easily find that the trajectories tend to two limit sets, respectively, and the limit sets are one-side stable.

Fig. 10 gives the numerical results of periodic solutions of system (2.4) with order 1–9 and period 2π with respect to θ
for 0 < δ < 2. The corresponding values of parameter δ are 0.2185(order 1), 0.409(order 2), 0.628(order 3), 0.807(order
4), 0.966(order 5), 1.118(order 6), 1.226(order 7), 1.332(order 8), 1.410(order 9), respectively. From Fig. 10, we can see that
if the periodic solution exists, the number of the order is increasing with δ increasing for 0 < δ < 2 and θ ∈ [0, 2π ]. For
convenience of comparison, some figures in Fig. 10 perform the rotation transformation with respect to the initial value,
which does not affect to show the existence of the corresponding periodic solution.

For δ = 0.409, system (2.4) has an order-2 periodic solution of period 2π with respect to θ (see Fig. 10(b)). For
δ > 0.409, Fig. 10(d, f, h) show that system (2.4) has order-4, 6, 8 periodic solution of period 2π with respect to θ which
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(a) Cylindrical coordinate. (b) Polar coordinate.

Fig. 9. The numerical simulation of system (2.4) for δ > 2.

corresponds to δ = 0.807, 1.118, 1.332, respectively. For the parameter δ in the intervals between those values (e.g.,
δ = 0.628 ∈ (0.409, 0.807)), system (2.4) has order-3 periodic solution of period 2π with respect to θ , but no order-1
or order-2 periodic solution of period π with respect to θ (see Fig. 10(c)). The similar results can be found in the other
parameter intervals.

For δ = 0.2185 < 0.409, system (2.4) has an order-1 periodic solution of period 2π with respect to θ . According to the
theoretical results, there will exist an order-1 periodic solution of period 4π with respect to θ if δ < 0.2185. Fig. 11 gives the
numerical simulations under the cylindrical coordinate and the polar coordinate, respectively. Fig. 11(1) shows that there
is an order-1 periodic solution of period 4π with respect to θ for δ = δ1 = 0.111. With δ decreasing further, there is an
order-1 periodic solution of period 6π with respect to θ for δ = β1 = 0.0735 < 0.111 (see Fig. 11(2)). Furthermore, when
δ < 0.0735, there is no periodic solution in θ ∈ [0, 6π ], but system (2.4) can have order-1 periodic solution in the intervals
θ ∈ [0, 2uπ ], u = 4, 5, . . . .

Figs. 10 and 11 have verified the existence of the case in which the increment ∆

2π is a rational number. Fig. 12 gives an
example to show that the trajectories are everywhere dense in the annulus where r2 < r < r1. But it is difficult to prove
that the increment ∆

2π is a rational number or not. Here only the numerical simulations are given .
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Appendix A

Definition A.1 (Lakshmikantham et al. [1]). A triple (X, π,R+) is said to be a semi-dynamical system if X is a metric space,
R+ is the set of all non-negative reals and π : X × R+

→ X is a continuous function such that

(i) π(x, 0) = x for all x ∈ X;
(ii) π(π(x, t), x) = π(x, t + s) for all x ∈ X and t, s ∈ R+.

We denote sometimes a semi-dynamical system (X, π,R+) by (X, π).
For any x ∈ X , the function πx : R+

→ X defined by πx(t) = π(x, t) is continuous and we call πx the trajectory of x. The
set C+(x) = {π(x, t)|t ∈ R+

} is called the positive orbit of x. For any subset M of X , we let M+(x) = C+(x)


M − x and
M−(x) = G(x)


M − x, where G(x) =


{G(x, t)|t ∈ R+

} and G(x) = {y|π(y, t) = x} is the attainable set of x at t ∈ R+.
Finally we set M(x) = M+(x)


M−(x).

Definition A.2 (Lakshmikantham et al. [1]). An impulsive semi-dynamical system (X, π;M, I) consists of a semi-dynamical
system (X, π) together with a nonempty closed subsetM of X and a continuous function I : M → X such that the following
properties hold:
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a b c

d e f

g h i

Fig. 10. Numerical simulations of order-k periodic solution of system (2.4), k = 1, 2, . . . , 9.

(i) No point x ∈ X is a limit point ofM(x),
(ii) [t|G(x, t)


M ≠ ∅] is a closed subset of R+.

According to the notations in [1], we write N = I(M) = {y ∈ X |y = I(x), x ∈ M and for any x ∈ X, I(x) = x+
}. Here, M

is called the set of impulses, I is referred to the impulsive function.
Defining a function Φ : X → R+


{∞} as follows:

Φ(x) =


∞ ifM+(x) = ∅,
s if π(x, t) ∉ M for 0 < t < s and π(x, s) ∈ M.

Here s is called the time without impulse of x, i.e. s is the first time when π(x, 0) hits M .

Definition A.3 (Lakshmikantham et al. [1]). Let (X, π;M, I) be an impulsive semi-dynamical system and let x ∈ X and x ∉ M .
The trajectory of x is a functionπx defined on subset [0, s) of R+ (s may be ∞) to X inductively as follows:

πx(t) = π(x+

n−1, t), τn−1 ≤ t < τn,
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Fig. 11. The existence of order-1 periodic solution with longer period.

Fig. 12. The trajectories starting from the point in the region r < r1 filling up the annulus r2 < r < r1 densely.

where {xn} is the sequence of impulse points of x, which satisfied π(x+

n−1, Φ(x+

n−1)) = xn. τn is the sequence of time of
impulses relative to {xn}, τn =

n−1
k=0 Φ(x+

k ).
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Definition A.4 (Lakshmikantham et al. [1]). A trajectoryπx is said to be periodic of period τ and order k if there exist positive
integersm ≥ 1 and k ≥ 1 such that k is the smallest integer for which x+

m = x+

m+k and τ =
m+k−1

i=m Φ(x+

i ).

Appendix B

The followings prove that θ∗

1 = θ1 and θ∗

2 = θ2 where θ1 =
1
2 arcsin

 2
δ


, θ2 =

1
2 arcsin

 2
δ


+ π ,

θ1
∗

= arctan

1
2
(δ +


δ2 − 4)


and

θ∗

2 = arctan

1
2
(δ −


δ2 − 4)


.

In fact, from the expressions of θ1 and θ∗

1 , we have that

sin(2θ1) =
2
δ

and

tan θ1
∗

=
1
2
(δ +


δ2 − 4).

On the other hand, from

sin(2θ1∗) = 2 sin θ1
∗ cos θ1

∗
=

2 tan θ1
∗

1 + tan2 θ1
∗

=
δ +

√
δ2 − 4

1 +
1
4 (δ

2 + δ2 − 4 + 2δ
√

δ2 − 4)
=

2(δ +
√

δ2 − 4)

δ (δ +
√

δ2 − 4)
=

2
δ
,

we can know that θ1 = θ∗

1 . Similarly, θ2 = θ∗

2 can also be proved.

Appendix C

Consider the autonomous system with impulse effect [21]
dx
dt

= g(x), x ∉ M,

1x|x∈M = I(x),
(C.1)

where t ∈ R; g, I : Q → Rn; Ω is a domain contained in the n-dimensional Euclidean space Rn with elements
x = col(x1, . . . , xn), scalar product (x, y) = x1y1 + · · · + xnyn and norm |x| = (x, x)1/2; M is an (n − 1)-dimensional
manifold contained in Ω .

Let φ(t) (t ∈ R+
= [0, ∞)) be a solution of system (C.1) with moments of impulse effect {τk} : 0 < τ1 < τ2 <

· · · , limt→∞ τk = ∞ and L = {x ∈ Rn
: x = φ(t), t ∈ R+

}. Bϵ(x0) = {x ∈ Rn
: |x − x0| < ϵ} is the ϵ-neighborhood of the

point x0 ∈ Rn
; J+(t0, x0) is the maximal interval of the form (t0, ω) in which the solution x(t; t0, x0) is continuable to the

right; ρ(x, L) = infy∈L |x − y| is the distance from the point x ∈ Rn to the set L ⊂ Rn.

Definition C.1 ([21]). The solution φ(t) of system (C.1) is called:

1.1. orbitally stable if
(∀ϵ > 0)(∀η > 0)(∀t0 ∈ R+, |t0 − τk| > η)(∃δ > 0)
(∀x0 ∈ Ω, ρ(x0, L) < δ, x0 ∉ Bη(φ(τk))


Bη(φ(τk + 0)))(∀t ∈ J+(t0, x0))

ρ(x(t; t0, x0), L) < ϵ;
1.2. orbitally attractive if

(∀η > 0)(∀t0 ∈ R+, |t0 − τk| > η)(∃λ > 0)
(∀x0 ∈ Ω, ρ(x0, L) < λ, x0 ∉ Bη(φ(τk))


Bη(φ(τk + 0)))(∀ϵ > 0)(∃σ > 0)

t0 + σ ∈ J+(t0, x0)(∀t ≥ t0 + σ , t ∈ J+(t0, x0))
ρ(x(t; t0, x0), L) < ϵ;

1.3. orbitally asymptotically stable if it is orbitally stable and orbitally attractive.
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Definition C.2 ([21]).We shall say that the solution φ(t) of system (C.1) has the property asymptotic phase if
(∀η > 0)(∀t0 ∈ R+, |t0 − τk| > η)(∃λ > 0)
(∀x0 ∈ Ω, |x0 − φ(t0)| < λ)(∀c ∈ R)(∀ϵ > 0)(∃σ > |c|)
t0 + σ ∈ J+(t0, x0)(∀t ≥ t0 + σ , t ∈ J+(t0, x0), |t − τk| > η)
|x(t + c; t0, x0) − φ(t)| < ϵ.
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