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In this paper, following a previous paper ([32] Permanence and extinction of a non-
autonomous HIV-1 model with two time delays, preprint) on the permanence and extinc-
tion of a delayed non-autonomous HIV-1 within-host model, we introduce and investigate
a delayed HIV-1 model including maximum homeostatic proliferation rate of CD4% T-
cells and varying coefficients. By applying the asymptotic analysis theory and oscillation
theory, we show: (i) the system will be permanent when the threshold value R« > 1,
and for this case we also obtain the explicit estimate of the eventual lower bound of the
HIV-1 virus load; (ii) the threshold value R* < 1 implies the extinction of the virus.
Furthermore, we obtain that the threshold dynamics is in agreement with that of the
corresponding autonomous system, which extends the classic results for the system with
constant coefficients. Numerical simulations are also given to illustrate our main results,
and in particular, some sensitivity test of R« is established.

Keywords: Non-autonomous; HIV-1 infection; delay; permanence and extinction; oscilla-
tion theory.
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1. Introduction

In recent years, viral infection models consist of ordinary differential equations for
the populations of uninfected CD4% T-cells, infected CD4" T-cells and free virus
particles have been received with great attention and studied by many scholars (see
[1-4, 8, 13, 15, 25, 24, 27, 33]). We know that many mathematical models of within-
host viral infections have played an important role understanding the population
dynamics of HIV-1 infection including drug treatment and drug resistance such as
Perelson et al. [23, 26], De Boer and Doucher [7], Perelson [22], Wodarz and Nowak
[35], Wodarz et al. [36]. A basic mathematical model describing HIV-1 infection
dynamics with the simple mass-action infection is given by (see [25]):

&(t) = A+ ax(t) <1 - %) — p(t) = (1 —n)kz(t)v(t),
§(t) = (1 — ng)kz(t)v(t) — dy(t), (1.1)

o(t) = Noy(t) — co(t),

where the variables and parameters are described in Table 1.

In general, time delay can arise for various practical dynamics behaviors in
epidemiology. From the study of autonomous models with delay (see [6, 11, 14, 19,
20, 34]), we can find that the delay differential equations (DDEs) exhibit much more
complicated dynamics than ODEs. The first model introduced the time between
viral entry into a target cell and the production of new virus particles was developed
by Herz et al. [12] and assumed that cells became productively infected 7 time
units after initial infection. Culshaw and Ruan [5] used the time delay between the
infection CD4% T-cells and the emission of viral particles to study the effect of
the time delay on the stability of the infected equilibrium. Song et al. [29] studied

Table 1. Descriptions of variables and parameters in (1.1).

Description (unit)

Variables

x(t) Density of uninfected CD4T T-cells (mm~3)

y(t) Density of infected T-cells (mm™3)

v(t) Density of virus particles (mm~—3)

Parameters

A Rate at which new CD41 T-cells are created from sources (day~'mm™3)

a Maximum proliferation rate

K T-cell population density at which proliferation shuts off (mm’3)

I Death rate of per CD41 T-cell (day~1!)

k Rate at which CD4T T-cells become infected with virus (mm?3day—1)

0 Death rate of per uninfected cell (day—1)

N Total number of new virus particles produced by each infected cell
during its lifetime %

c Rate at which the infectious virus is cleared out (day—1!)

Nt Effectiveness of the reverse transcriptase inhibitor
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the viral models with time delay as follows:

(t) = X+ ax(t) < - %) — px(t) — kx(t)v(t),

g(t) = ka(t — )t — 1) — dy(t), (1.2)

o(t) = Noy(t) — cv(t).

All parameters are the same as in system (1.1) except that the positive constant 7
represents the length of the delay in days.
According to the model in [21], Liu and Wang [16] studied the following system:

() = X — px(t) — (1 — ny)kx(t)v(t),
y(t) = (1 — ngp)ke 1M a(t — m)v(t — 1) — Sy(t), (1.3)
o(t) = (1 —n,)Nse m2y(t — 12) — cv(t),

where n, denotes the effectiveness of the protease inhibitor, the terms e 01T 0T
account for the portion of cells infected at time t that is able to survive at least 7
time units and the portion of productively infected cells that can survive 7 time
units to produce newly infectious virus (see [16], 61 = p + ¢).

On the other hand, the non-autonomous phenomenon often occurs in many
realistic epidemic models since biological and environmental parameters of the
system are naturally subject to fluctuate in time. Many diseases show seasonal
behaviors such as varying infection rates, fluctuations in birth rates and so on (see
[17,9, 10, 13, 30, 31, 37, 38, 18]). Rong et al. [28] considered the mechanisms under-
lying the emergence of drug-resistant variants during antiretroviral therapy (ART)
and studied the effect of antiretroviral drugs on the evolution of drug-resistant
HIV mutants by using a mathematical model. To investigate the non-autonomous
phenomenon in the model, the coefficients should be periodic functions. Therefore,
the purpose of our current paper is to establish the threshold values for a non-
autonomous HIV-1 infection model with two delays and show that the disease will
be permanent when the threshold value R, is larger than unit, and the disease will
go to extinction when the threshold value R* is smaller than unit.

2. Model Formulation and Preliminary Lemmas

In this paper, we consider the following non-autonomous HIV-1 infection model
with two delays:

(6) = M)+ a(0)a(t) (1= 50 ) = u(0l0) = (1 = na DR}l
g(t) = (1 — nrt(t))kl(t)e*ff—n Wyt — )t — 1) — S(H)y(t), (2.1)
0(t) = (1 = np(E)N()3(t)e™Fi=r2 2Oy (1 — 70y — c(t)(t),

1350030-3



Int. J. Biomath. Downloaded from www.worldscientific.com
by WSPC on 09/10/13. For personal use only.

X. Wang, S. Liu & X. Song

where the meanings of functions A(t), a(t), u(t), K(t), k(t), k1(t), 6(t), N(t), c(t),
Ny (t) and ny,(t) appeared in (2.1) remain the same as the corresponding parameters
A a,p, Kk, k1,6, N, ¢,ny, and np in models (1.2) and (1.3), respectively.

For convenience of notations, we denote

Bi(t) = (1 — nee(t))kr (t)e -fi ch(s)ds7
Y(t) = (1= ny(B) N()5(t)e S 200,
then we can rewrite system (2.1) as follows:
(6) = M)+ a(0)a(t) (1~ 52 ) = u(0ol0) = SOl )
§(t) = Bu(t)a(t — m)o(t — ) — 3()y(0), (2:2)

o(t) = y()y(t — 72) — c(t)v(t).

In the following, we will give some assumptions and notations for system (2.2).

(A1) Functions A(t), u(t), 8(t), B1(t),5(t),v(t), c(t) are positive continuous bounded
and have positive lower bounds.
(Ag) If f(t) is a continuous bounded function defined on [0, +00), then we set

S'=ff@), = sup /(¢)-
The initial condition of (2.2) is given by
z(0) = ¢1(0), y(0) = 2(0), () = @3(d), —T<O<0, ©:(0)>0,
i=1,2,3, (2.3)

where ¢ = (1,02, ¢3)T such that ¢;(0) > 0 (i = 1,2,3) for all § € [-7,0],
7 = max{7, T2}, and C denotes the Banach space C([—7,0], R?) of continuous
functions mapping the interval [—7, 0] into R* and designates the sup-norm of an
element ¢ in C by

el = sup_{Ie1(®).lea(0)] lea(®)])

Definition 2.1. The bystem (2 2) is said to be permanent if there exist positive
constants ¢, g1, g2 and L L1, L2 such that the following inequalities,

¢ < liminf z(¢) < limsupz(t) < L,

t—-+4o00 t——400

@1 < liminfy(t) < limsupy(t) < Ly,

t——+o0 t—+oco

@ < liminfo(t) < limsupv(t) < Ly,

t—-4o00 t——400
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hold for any solution (x(t),y(t),v(t)) of system (2.2) with initial condition (2.3).
Here q, ¢1,G2, L, L1, Lo are independent of (2.3).

Lemma 2.2 ([37]). Consider the following non-autonomous linear equation

w(t) = A(t) — p(t)w(t). (2.4)
Suppose that assumptions (A1) and (As) hold, then:

(i) FEach fized solution w*(t) of Eq. (2.4) with initial value w(0) > 0 is bounded
and globally uniformly attractive on R .
(i) There exist m, M > 0, such that m < liminf, . w(t) < limsup,_, . w(t) <
M.
(ili) When Eq. (2.4) is T-periodic, then we obtain that Eq. (2.4) has a unique non-
negative T-periodic solution w*(t) which is globally uniformly attractive.
(iv) If u(t) > 0 for allt > 0 and

A A(t)
0 < liminf —= < limsup —= < +o0,
t=too pu(t) T t—too pult)
then for any solution w(t) of Eq. (2.4) with the initial condition w(0) > 0, we
have

A ()\)l . . <)\>“ . At)
liminf —= = | — | <liminfw(t) <limsupw(t) < [ —| = limsup —=.
t——+o0 p(t) H 00 ®) t—-00 ®) ,u t—too p(t)

Lemma 2.3. The solution (z(t),y(t),v(t)) of system (2.2) with initial condition
(2.3) is positive and bounded for all t > 0.

Proof. Since the right-hand side of system (2.2) is completely continuous, then

the solution (z(t),y(t),v(t)) of system (2.2) with initial condition (2.3) exists and

is unique. Obviously, we can easily obtain x(t) > 0, y(t) > 0, v(¢) > 0 for all ¢ > 0.
Next, we only prove that x(t),y(t), v(t) are positive bounded for all ¢ > 0.
According to the first equation of (2.2), we get

() < X+ (0¥ = pha(t) — =22 (1),

then we have

K A\U l
limsupz(t) < - (au—ul+\/(a“—ul)2+ a4 ) 2.
t— oo 2a

Denote

Bldl

l
: T Sguau
2B1

U(t) = z(t) + /B_%y(t +71)

v(t + 71 + T2),
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then we can calculate the time derivative of U(t):

U(t) < A\ 4 a"x(t) — “—lx2(t) —oU(t)

Ku
Cll Ktaq¥ 2 N Ku(au)Z
K*(a")? 00
<\ = —
—)\ + 4al GU(t)7 o {,U, 276 ’

by Lemma 2.2, which implies that

4 l)\u K% (g% 2
limsup U(t) < @\ + K*(a")
t—4o00 4alo

Lemma 2.4. If time series {t,}52 is large enough, then y(t),v(t) satisfy

Y(tn — ) < cry(tn), v(t, —s) < cov(ty), 1= 65%’ o = eCuT, s €[0,7].

Proof. From the second equation of (2.2), we have

y(t) = =0()y(t) = —0"y(t),

then integrating from ¢,, — s to t,, we obtain

in

Y(tn) = y(tn — s) exp <_/t

n—S

(5”d9> = ey (ty —5) > e 0 Ty(tn — 5).

Thus, y(t, —s) <

e
we have v(t, — s) < e Tv(t,) = cav(ty). |

Lemma 2.5. The solution (x(t),y(t),v(t)) of system (2.2) with initial condition

(2.3) satisfies
4 u>\l
A+4[A2+ C;{l ] 24, (2.6)

uw ﬁuﬁit,yu ) 4al>\u+Ku(au)2
BLt 2alo :

Kl
liminfx(t) > —
1m1nx()_2au

t——+o0

where A = a! — 1

Proof. From Lemma 2.3, for any € > 0, there exists a large enough T such that

26%71/, 4al>\u+Ku(au)2
t .
v(t) < BLot dato

+e, VtZTo.
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Thus, by the first equation of system (2.2),

. x(t)
> 1— ) —
i(6) 2 X0+ a(0a(t) (1= 5 ) = (a0
IB'f,,yu 4al>\u +Ku(au)2
U AU 4al)\u +Ku(au)2 av
SV PRV uﬂﬁ’_ a9
> A {,u a' + (ﬁl(Sl Sl +e || x(t) 7 (t)
and hence, we have
K! 4av )\
. K o
ltlin_glofx(t) > 500 A+ A%+ i ] (2.7)
O
Set
611. t U t
W(E) = y(t) + ro(0) + / fu(s + m)a(e)o(s)ds + S / (s + 72)y(s)ds
=71 t—Ta
(2.8)
and
S5t t sttt
G = ylt)+ o0+ [ Bile+mel©uds + 2 [ a6+ mine
t—71 t—To
(2.9)
then we have the following lemma.
Lemma 2.6. For any t large enough, then we have the following results:
(i)
W(t) < kiy(t) + k2v(t), (2.10)
where k1 =1+ 51;7u a1 and ko = ‘,Sy—j + ﬂi;j‘u CoT.
(ii)
G(t) < kyy(t) + ky(t) < W (1), (2.11)
where kY = 1+ 6'eyr and kY = ,‘:—i + Bi;;\“ CoT.

Proof. It follows from (2.8) and Lemmas 2.3 and 2.4 that
u U\ U 61]. u

0 1 g
Wi(t) < y(t) + Vu(t) + o cotv(t) + " c1Ty(t)
= <1 + 'yl 617') y(t) + <V + TCQT) ’U(t)

= k(1) + kay(t).
Similarly, from (2.9) and Lemmas 2.3 and 2.4, we easily obtain
G(t) < kyy(t) + kao(t) < W (D). O

1350030-7
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3. Permanence and Extinction

In this section, we will establish sufficient conditions for the persistence of (2.2).

Denote
Klﬂl’j/l u 4)\lau
R = Ggugn @ — 1" (el = )P b =
s o (3.1)
o KB L w e, Aa
R 2aldlcl [a wor \/(a o+ Ku 1

Theorem 3.1. The system (2.2) with initial condition (2.3) is permanent if R, > 1.
Proof. We will give the propositions to complete the proof of this theorem. |

Proposition 3.2. If R, > 1 holds, for any positive solution (z(t),y(t),v(t)) of
system (2.2) with initial condition (2.3), then we have

liminfy(f) > g, lminfo(t) > g, (3:2)

i —ct
where q1 = %%%ql, where ¢, q1,p and g2 are defined in (2.6), (3.3), (3.6)

and (3.16), respectively.

Proof. Here we will show that it holds by following four steps.

Step I. We first prove that there exists

1 Attt )\lﬁ;lﬂ/l Cl gu

(R, —1 ng ——,— 0, 3.3
2( ) <Klﬁi'}/l + R*é‘ucu) min { 6u,yu 6u,yl } > ( )
such that limsup, ., y(t) > q1, for any solution of system (2.2). Suppose that

it is not true, then limsup, ,, . y(t) < q1, by the third equation of system (2.2),
we get

Q1 =

o(t) = y(D)y(t — 72) — e(t)o(t) < v — y(b),

1" q1
Cl

of system (2.2), we get @(t) > A — (u* — o' + EXq1)x(t) — ;‘{—ulxz(t).

cl

A\l qv
A1+\/A§+T] 2 h(q), (3.4)

from Lemma 2.2, we have limsup, ,,  v(t) < . Thus, from the first equation

Then we obtain

!
liminf z(t) > 5

t—+oo - 2a%
where A = a! — p* — W;f‘ qi.
Noting that the definition of W (¢) in (2.8), then we have
. 61]. U
Wi(t) > (ﬂih(ql) - 7? )v(t) >0, if R >1, (3.5)

for all ¢ large enough, which means that W (t) is increasing. From Lemma 2.4,
W (t) is positive and bounded, so there exists a constant W* > 0 such that

1350030-8
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W (t) — W* as t — o0, which implies that W (t) — 0 as t — +oo, this reduces

that v(t) — 0, and then y(¢) — 0 as t — +00, which means a contradiction. Thus,

limsup, ., o y(t) = a1

Step II. Next, we will prove that there exists ¢ = ge~("+?P)¢" such that W (t) > co.
From (2.8) and Step I, we obtain that for any o > 0, W(t) < ¢ is impossible

for all t > %o. Hence, we will consider the following two possibilities:

(a) W(t) > ¢ for all ¢ large enough.
(b) W(t) oscillates about ¢; for all ¢ large enough.

Here, we only need to consider the second case. Let t; and ¢y be sufficiently
large satisfying:

W(tl) = W(tg) =q1, W(t) <qi, Vite (tl,tg).
If to — t1 < 7+ 2p, where

2
1 1 ﬂul
S

1
1 K! A 4av
p== 5 In m >0,
2 au)\l +KTZ (uu _ al + ﬁugul(h) a LEO
(3.6)
where ¢¢ is defined in (3.12). From (2.8), we have
SU l
U S W) <an, w(t) < ";—Z Vi€ (t + 7 ty).
By the first equation of system (2.2), for all ¢ large enough, we have
U AL u
#(t) > N — (,ﬂ oy ;um) a(t) — %ﬁ(t)
__a“ x(t)-i——l u_al_’_ﬂu'yl(h Y
K 2av \ M 5
K (o R
+M<“ —d + 5u1> . (3.7)
Let
Kl U A L
2() = () + 5 (;ﬂ —d 4P ;u‘h),
(3.8)

Kl u Al 2
b:)\l—F— Mu_al_i_ﬁﬂ)/ql
4a™ o

Then the inequality (3.7) can be rewritten as

i(t) > —%X(t) +b= <\/5+ \/%Z()f)) (x/E— %z(t)),

1350030-9
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which implies that
1 1 i 1
2vb V&) + Vb =z (t) + VD

for any ¢t € (1 + 7,t2); we may integrate (3.9) from ¢, + 7 to ¢, then

dz(t) > dt, (3.9)

DK 2,/ 85
@0 = a Vot /L1 z(t1+7)
1T ba*
Vo \/_(t1+7' p<2V (t_tl_T))+1
bEL 2 f—: (\/E— %z(tl —|—7')) exp( 2 (t—tl —7'))
> _

at Vb4 () &zt +7)

LKL 2vbz(t) + T) exp (—2 bat (t —t; — 7'))
T B
a Vo4 /%2t + 7)

2()\/76}(}3( 2,/% (t —t1 — 7))

Vb + 4 2(t +7)

F 2b\/76Xp( 2, /5 (t =ty — 7)) 3.10)

Vb4 /%2ty +7)

By (3.10), we get

bK! K l 5”71(11
t)y >\ —— — | pu*— _—
x(t) > o 2au<L @+ )

20/ o5 exp( 2 b“u (t—t — 7'))

Vb + /4% ( (t+7)+ 25 (uu—al+—ﬁ“;fql))

2q¢

A KL Kl Burlg 2 gl /Bu’YlCh
> i u _ ol [ - u _ gl [
\/ a + <2a“ <,u @t o 2a% s @t o

Kl Kl w Al 2
_9 PR Mu_az+57m
av 4av o

2
exp (—2\/’\lau +4 ( —al + —ﬂu(;{fql) (t—t; — ’7')>
U%.’L‘(tl +’7’)

1350030-10
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AK! Kl unl 2
> + [ — 'uu —al + m
av 2a% o

K! u 1 5“’}’[(11
o (“ —a ) e

1>

T, (3.11)

for any ¢t € (t1 + 7 + p, t2), where

1 AK! ot
502—{ +@%_91——C }>0> (3.12)

2 at

where 6, = £ (u* —a' + %qu)

2a%

Thus, from (2.8) and (3.5), Vt € (¢1,t2), we obtain

W) = (e 1) - Z3e)) o0) > =500 2 W) (313)
Note that to5 —t1 < 7+ 2p, so we have
t
W(t) > W(t1)exp (—/ c“d@) > g1 exp(—(7 + 2p)c*) 2 . (3.14)
ty

If to —t1 > 7+ 2p, obviously, W (t) > ¢o holds when ¢ € [t1,¢; + 7+ 2p], by (3.5),
when ¢ € [t1 + 7 + 2p, t2],

u

. )
W(t) > <ﬂixA - ch> v(t) >0, if R, >1,

then we have W (t) > W(t1 + 7 + 2p) > ¢, for all t € [t1 + T + 2p, t2]. Hence,
W(t) > ¢o > 0 for all ¢ large enough when R, > 1.

Step III. In this step, we will prove that

ltim_&nfv(t) > o, (3.15)
where
_ 1 ! 14! —cv 2
q2 ’Y CO . _7 Q1 eXp( c (T + p)) > O7 (3.16)

- 5’}’”@02 + kic® 2 ’YleCQ + kic®

and co, k1, ko and ¢p are defined in Lemmas 2.4 and 2.6 and (3.3).
Suppose (3.15) does not hold, then liminf; .4 v(t) < g2, from the definition
of inferior limit of v(t), we can choose a sequence {t,}52 ; such that

v(tn) < G2, tn, — +00, asn — 0.

1350030-11
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By Lemmas 2.3-2.6, we get

> Co — kg’U(tn — 7'2) > Co — kQCQ’U(tn).

tn — 3.17
oty —m) = O 5 (317)
It follows from the third equation of (2.2) that
—k tn
oftn) 2 7(t) 222U 1 30(0,)
> e o V'kaca\ ~
= Ty q2
_ m 'k + 7t kaco 1 Yeo
- k1 k1 2 ’YleCQ + kic®
1
7 Co
=—>0. 3.18
o (3.18)

Next, we will consider the following three cases:

(i) If v(t,) oscillates about ga, obviously, there exists a subsequence {t,,} such
that t,, — +o0, as j — oo, and 9(t,;) = 0; this is a contradiction from
0(ty,) > 0.

(i) If v(ty) < g2 and v(t,) is uniformly ultimately increasing, by 0(¢,) > 0, then
there exists 7,, > 0 such that v(7,) — v*(constant) < gz as n — 00, S0
0(T,,) — 0. Noting that (3.18), lim, o 0(Ty) > “g,:f’ > 0; this reduces a
contradiction.

(iii) If v(tn) < g2 and v(t,) is not uniformly ultimately increasing, for any T' > 0,
then there exists tp > T such that v(t7) < 0 and v(t7) < g2; this reduces a
contradiction again.

Therefore, we have liminf; 1o v(t) > .

Step IV. Lastly, we will prove that liminf; . y(¢t) > @1, where ¢; is defined in
Proposition 3.2.
By the second equation of system (2.2) and Lemma 2.5, we get

§(t) = Bi(t)a(t — T)v(t — ) = d(t)y(t) > Piaga — 6“y(t),
according to Lemma 2.2, which means that

Blaz  1Biq Ale—e ) .
lim inf S R — 3.19
iminfy(t) > =5 = 5% kaco + kpen t — 0 (3.19)

O

Remark 3.3. In system (2.2), A(¢), a(t), K(t), u(t), 8(t), B1(t), 6(t), v(t) and c(t)
are replaced by positive constants, namely, system (2.2) becomes an autonomous

1350030-12
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HIV-1 infection model with two delays. The basic reproduction number of this
autonomous HIV-1 infection system is given by

_ Kby
Ro = 2adc

4\
e

K

Clearly, R, > 1 implies Ry > 1.

Proposition 3.4. If R, > 1, then for any positive solution (z(t),y(t),v(t)) of
system (2.2) with (2.3), we have
limsupy(t) < Ly, limsup v(t) < Lo, (3.20)

t——+oo t——+4o0

where ivl <, LNQ < "g—jco, & are defined in (3.39).

Proof. Similar to the proof of Proposition 3.2, we also only consider the following
steps.

Step I. We first prove that there exists

alé‘lcl )\uﬂ'f,,yu

cu

Li=2——(R"-1 0, if R">R.>1, (3.21
=2 ) (i ) 20 RS R @20
such that

ltierinfy(t) < L. (3.22)

If it is not true, then liminf; .| y(t) > L1; by the third equation of system (2.2),
for all ¢ large enough, we have

0(t) = y()y(t — 1) — c(t)v(t) >y Ly — cto(t),

according to Lemma 2.3, then lim inf; o v(t) > "’—ZLl. Thus, by the first equation

— cu

of system (2.2), for all ¢ large enough, we can obtain
Bint 1
Z(t) < A% — (ul —a" + c—“L1> x(t) — —2z2(t),

which implies that

K" [Nl [P 2 4)\ul
limsupz(t) < — a“—ul—ﬁle—l—\/(a“—ul—ﬁle) + a

t—stoo 2al cv cv Ku
2 .. (3.23)
Note the definition of G(¢) in (2.9), then we get
. By
G(t) < Bt +7)z(t)o(t) — W—UC(t)U(t)
e

which means that G(¢) is decreasing. By Lemmas 2.3 and 2.4, G(t) is positive
bounded. Therefore, G(t) — G* (constant) as t — +oo; then G(t) — 0 as t — +00;

1350030-13
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this reduces that v(t) — 0,y(t) — 0 when ¢ — +o00, which implies a contradiction
since G(t) > 0, so we obtain lim inf; .. y(t) < L.

Step II. Next, we show that there exists

~ kic® + ylkoco aldtc! AU B
L, =2 T2 pe 4 >0, 3.25
! Blyl ( ) Kufuye - R*olcl (3.25)
where
Fryt o AU u u
]{11:1+ 7617’, ]{122—[+M, 612667, CQZBCT,
v T
such that
lim inf G(1) < L. (3.26)
Otherwise, we have
i G0 > L,
using (2.8), (2.9) and Lemma 2.6, we obtain
Ly < G(t) < W(t) < k1y(t) + kev(t), for t large enough. (3.27)
By the third equation of system (2.2), we get
Ly — kav(t —
it) 2 (T )
1
'L 'k
> Rt (P + T v(t), for t large enough, (3.28)
k1 k1
then, from Lemma 2.2, we have
S
o 7' Ly
1 fo(t) > ————.
1o o(t) 2 et +~lkacy
According to the first equation of system (2.2), we have
. x(t
B(6) = X0+ a(0a(t) (1= 52 ) = u(0at) = o)l ()
<A\ — l—a“—i—L@l x(t)—a—lx2(t)
- # kic* + ﬁ/lk‘QCQ Ku ’
which reduces that
K" 4 uq! 5
limsupz(t) < — | T+ /T + e z, (3.29)
t—+o0 2 Ku
LT .
where T = p! — a® + hﬁ;’% By (2.9), we obtain
. Sle(t
G(1) < 610+ m)aolt) -S4
ste
< (ﬂ@— —u> o(t) <0, if R >1, (3.30)
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which implies a contradiction according to the same reason in Step 1. Thus, we
obtain liminf; 4 G(t) < Ls.

Step III. From (2.9) and Step II, we can find that G(t) > L, is impossible for all
t > 19, VtY > 0. Thus, we have the following two possibilities:

(a) G(t) < L, for all ¢ large enough.
(b) G(t) oscillates about L, for all ¢ large enough.

Similarly to the proof of Proposition 3.2, let ¢} and ¢, be large sufficiently such
that

G(t)) = G(ty) = L, G(t) > L, Vte (t),th).

If ¢, — t} <74 p1 + p2, then here

k'l " - 0 . N )\uﬁ%,}/u R*al(Slcl
= ————1In , —a" = — ,
P1 kpct + kocoy! H R*§lcl Kugiyu
K* (R*—1 Lgtet 3R*—1  A“Bi'v"
1 [ Kv 2 {L"' 2al ( 2 K%ﬂ;fw + T R )]
= —4/—1In
$2 2 blal £2 ’

~ 2
K" 3 YL
by = N4 — [ flogquyp 2177
! * 4Cll (u @t 4 k1c“ + ﬁ/lk‘QCQ

K 3 al(glcl )\ulgu,yu 2
= \¥ o I u © *_ 1 1
"l {“ ey (wa Rgd ﬂ |
- 1 5tet + E R*—1 aléle! 3R* —1 A“Biy*
2T 2B T 2d T 2 KBy 2 R*glcl
b1 Kv
— " } . (3.31)

Note that
L < G(t) < W(t) < kry(t) + kav(t), Vte () +7+p1),
then by the third equation of (2.2), we have

oft) 2 o LT o

T 1
S Yk (Cu+7k262
ky 1

)v(t), Vie (ti+7t +7+p1). (3.32)
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Integrating the inequality (3.32) from ¢} + 7 to ¢, we obtain

t 1
v(t) > v(th +7)exp —/ <c“ + M) ds
th+T k1
t lf t l
—|—/ T exp (—/ (c“ + @) d9> ds
T k1 s ki

T l
7' Ly w | YV kace /
—_— |1 - — t—t] — 3.33
> klcu +’Ylk202 ( eXp( (C + kl > ( 1 T)))v ( )

-
then v(t) > klculif/}km —¢1, for all t € () + 7+ p1,th), where

R*—1 l(sl ! N\ QU
81 —= a c + ﬁl q/ > O.
2I8l Kulgil«,yu R*(Slcl
Using the first equation of system (2.2), we can obtain

B(t) < A — ( —a+ - 3#> (t) — a—lx2(t)

4 klc“ + ’YleCQ

3 517121 al
—\¥ — L u o Fr=r 1) — —— 2 t
(“ e Tl ) T T @ )

-~ 2
at K 3 B4,
= )+ — — Nl et S
w | =0+ 2al w tt 4 ket + ylkycy
K" 3 AL ’
+>\“+—<u —a +—L> : (3.34)

4 klc“ + ’YleCQ

for any t € (t{ + 7+ p1,t5).

Denote
K" 1 3 517@1
t) = x2(t — I S
u(t) = =(t) + a (M “ +4k1cu+vlkzcz 7

K" 3 617@1
by = \¥ o~ I u e St S
! * 4Cll (u @t 4 k1c“ + ﬁ/lk‘QCQ

from (3.34), we have
a(t) < —[‘;—iL )+ b = (f t)> <\/E+ \/%u(t)), (3.35)
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we can integrate it from ¢} + 7 + p; to t, then

bt/ el
L EAOAT) o (5B (¢~ ty 7 =) ) -1
b1 Kv | Vbi—\/ fwult)+74p1)

! 1
a Vbi+y/ Eru(t+7+
! KZ“(I Tpl)exp(? ’}i’(t—t’l—r—p1))+1
Vbi—\/ Fwu(ti +7+p1)

b K‘u. 1
hRT L <\/_ Fru(th —I-T-I-Pl))
al (C)

blK“ a_l /
e (Vi = fmutts + 7))
l
¢ <\/ + 1/ B ult] +T+p1)> (eXp(Z\/ b;ﬁ t—t)—r —p1)> + 1)

_ K" 251\/?

B \/7 <\/H+ \/%u(t’leTval)) <exp<2\/b17(t—t’ —T—p1)> +1>
2vbru(ty + 7+ p1)

<\/_+ zu(th +T+p1)> <exp<2W(t—t’ —T—pl)) +1>

by K 2vb1u(ty + 7+ p1)

_|_
l
¢ <\/_+ zu(t) +r+p1)> eXp(Z\/ Z’;(iil (t—th —T—pl)>
b K b
<4/ 1a + 2u(t] +T+p1)exp< 24/ [1(11 (t —t] —T—p1)> (3.36)

—+

where
blal
\/74- u(t) +7+p1) | exp| 2 Tou — =ty —7—p1)
+ /b1 — —u t, +7+p1).
Therefore,
biKv K% u 3 By T,
a(t) < T o0 e I AT L
a 2a 4 kic* + v'kaco
+2 | a(t) + 7+ S e 'Ly
! pl 4 klc“ + ’Yl]{iQCQ
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bral
Xexp<—2 ;{—i(t—t'l —T—p1)>

- al 2a! krct + yltkoco

b Kv KU 3 INLT,
1___<ul_a“+ZL>+52éxA’

for any t € (t] + 7 + p1,t,), where

. 1 Stel +£ l_au+§ 517@1 ~ [bK*
27 9 By 2at H 4 kit + ylkacy al

[ K (R -1 alld 3R 1Bt
2| By 24 2 Kupyv 2 R*sld

Thus, from (2.9) and (3.34), we obtain

) 1
G(t) < Ba(t+ m)a(t)o(t) — %cu)v(t)
< 10+ m)e(00l) < Plaa()

So

(3.38)

(3.39)

If th —t) > 7+ p1 + p2, then G(t) < ° for any t € [t|,t] + 7 + p1 + p2]. When

teth +7+p1+pe,th), from (3.30) and (3.37),

then we have

G(t) < G(t’l +T74+m -l-pz) <.

(3.40)

Therefore, we have that if R, > 1, then there exists a positive constant ¢ such
that G(t) < c® for all ¢ large enough. We note that the expression of G(t) defined
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in (2.9), then

7" 7"
y(t) < G(t) <P, w(t) < yG(t) < yco, for all t > 0.
Thus we obtain limsup,_,  y(t) < Ly < lim SUP;_, o0 V(1) < Ly = %CO. m|

Remark 3.5. From Propositions 3.2 and 3.4, we obtain

u

7 < liminfz(t) < li 1)<,
q < liminfz(t) < irfit.tpx“* o

1 < liminfy(¢t) <limsupy(t) < Evl <
t—+o0 t—+oo
and
g2 < liminfo(t) <limsupov(t) < R

t—-+o0 t—+o00 ot
This completes the proof of Theorem 3.1.

Next we present the sufficient condition for the extinction of both virus and
infected T-cells.

Theorem 3.6. If R* < 1, then any positive solution (z(t),y(t),v(t)) of sys-
tem (2.2) with (2.3) satisfies limy_+ oo y(t) = 0, limy1 oo v(t) = 0, that is, the
disease in system (2.2) will go to extinction.

Proof. From R* < 1, there exists a small € > 0 such that ﬂé:zlu (L+¢€) <1, where
L is defined in Lemma 2.3.

By Proposition 3.4, we obtain that there exists a 7" > 0 satisfied as ¢t > T,
and

. ) lCl
Glt) < e+ (o)  Se(tnle) < (AL +9 - 25 ) ol

5ll U AU
- 7—2 (651!3! (L+¢)— 1) u(t)

(B [
Using R* < 1, we obtain G(t) < 0, and lim; ., o, G(t) = 0. Thus we have

lim y(t) =0, lim wv(t)=0. |

t——+o0 t——+oo

4. Numerical Simulation and Sensitivity Test of R,

In this section, we present computer simulation of some results of the system (2.1)
using MATLAB 7.0. Most of the parameters’ values are taken from Perelson and
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Nelson [25], Rong et al. [28], or smaller changes according to the corresponding
parameters of [5, 25, 28]. Consider the following system:

L)

(t) = X — pa(t) + ax(t) ( e

)~k

— (0.2sin(4t) 4+ 0.3))x(t)v(?),

9(t) = k(1 — (0.2sin(4t) + 0.3)))e =7z (t — 71 )v(t — 71) — dy(1),

o(t) = N&(1 — (0.25cos(4t) + 0.4))e ™2y (t — 1) — cv(t).

(4.1)
According to the expressions of R, R* in (3.1), we have
0.175KNke 0171072 (a —pn+/(a—p)?+ %)
= 2ac
12000 12000
10000 10000
? 8000 g 8000
;Z 6000 E 6000
2000 2000
GO 5‘0 1 60 1 %O 260 250 300 00 5‘0 1 60 1 E::O 260 250 300
(a) (b)
x10*

[J

~

)

virus particle v(t)
N w S o

0 50 100 150 200 250 300
t

(©)

10000

infected T-Cell y(t) 0o

virus particle v(t)
S

15000
5000
5000

uninfected T-Cell x(t)

(d)

Fig. 1. Time series of uninfected T-cell z(¢) (see (a)), infected T-cell y(t) (see (b)), virus particle
v(t) (see (c)) in (4.1) with R* ~ 5.75 > R. = 1.32 > 1, respectively; (d) phase diagram of a
periodic solution of the model (4.1).
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and

0.765 KNke 0171¢=072 <a — At/ (a—p)?2+ 4%)
R* =

2ac

Case (I). If we choose the parameters that A = 10,000, = 0.01, k& = 0.00006,
01 =056=1,a=0.2, N =100, K = 2200, c =3, 11 = 0.25, 7o = 1, from (3.1),
we have R* ~ 5.75 > R, =~ 1.32 > 1; then, from Theorem 3.1 we know that the
system (4.1) is permanent (see Fig. 1).

Case (II). If we choose the parameters that A = 10,000, © = 0.1, k& = 0.0003,
6 =05,6=1,a=0.2 N =100, K = 2200, ¢ = 25, 1y = 0.25, o = 1, we have
R, ~ 0.75 <1 < R* = 3.29; this example is to show that even if the conditions of
Theorems 3.1 and 3.6 do not hold, system (4.1) still may be permanent (see Fig. 2).

12000 T T T T T 8000

7000
10000

6000

@
S
1S3
S

uninfected T-Cell x(t
@
[=3
3
3
infected T-Cell y(t)

5000

4000

@
S
<3
S

4000
2000

2000
1000

0 50 100 150 200 250 300 0 50 100 150 200 250 300
t t

8000

7000

6000 -

o
=3
S
=]

virus particle v(t)
P
o
o
o

virus particle v(t)
B
S
[=3
o

@
=3
<]
=]

2000 8000 » }
6000 } ) ) 15000
4000 10000

1000 -

2000 5000

infected T-Cell y(t) 0o

0 50 100 150 200 250 300
t uninfected T-Cell x(t)

(c) (d)

Fig. 2. Time series of uninfected T-cell z(t) (see (a)), infected T-cell y(t) (see (b)), virus particle
v(t) (see (c)) in (4.1) with R* ~ 3.29 > 1 > R, ~ 0.75, respectively; (d) phase diagram of a
periodic solution of the model (4.1).
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Case (III). If we choose the parameters that A\ = 10,000, u = 0.1, ¥ = 0.00002,
01 =05,0=1,a=0.2, N=100, K = 2200, ¢ = 25, 11 = 0.25, 7o = 1, from (3.1),
we have R* ~ 0.22 < 1, then, from Theorem 3.6 we know that the disease in the
system (4.1) goes to extinction (see Fig. 3).

Obviously, R* ~ 4.37R,, thus, in the following, we will analyze the relationships
between R, and some coefficients in our model (4.1) with parameters in Case (I). By
numerical analysis (see Fig. 4), we obtained a threshold value for some parameters
in system (4.1) such that R, is 1. Specifically, when A < A\* or k < k* or N < N*,
R, is less than 1 by plotting the change of R, as a function of one parameter (all the
other parameters were fixed). When a (or § or 72) is greater than its corresponding
threshold value, R, is also less than 1. Thus, the virus is predicted to be cleared in
these cases.

12000 80
70
10000
60}
£ 8000 = 50f
% =)
= s
3 =
<Q 8 40
[ [
g 6000 e
3 2 30
8 g
E 2
S 4000 < 20
10
2000
ok
0 -10

0 50 100 150 200 250 300 0 50 100 150 200 250 300
t t
(a) (b)
70
60 ] 80
50 1 60J.
s
= w0 > 404
> °
2 H
T 30 S 20
S ]
g £
S 20 J 04-
| 20,
10 100 .
o 15000
_10 . . . . . 5000
0 50 100 150 200 250 300 . i
t infected T-Cell y(t) 50 o uninfected T-Cell x(t)
(c) (d)

Fig. 3. Time series of uninfected T-cell z(t) (see (a)), infected T-cell y(t) (see (b)), virus particle
v(t) (see (c)) in (4.1) with R« =~ 0.05 < R* =~ 0.22 < 1, respectively; (d) phase diagram of the
extinction solutions of the model (4.1).
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Relationship between R, and A
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Fig. 4.

5. Conclusion

Relationship between R, and k
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k x 107
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0.1 0.2 0.3 0.4 0.5
a

14 Relationship between R, and 1,

The relationships between R. and A\, k, N, a, d, 12.

In this paper, a non-autonomous HIV-1 infection model with delays is investigated.

Usually, the non-autonomous systems do not have any disease-free equilibrium and

endemic equilibrium. Many methods to study autonomous systems may not be
suitable to the non-autonomous cases. Therefore, the dynamical behaviors may be
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more difficult to study than autonomous system. In our present system, we have
established some new threshold values R, and R*, and further obtained that the
disease will be permanent when R, > 1 and the disease will be going to extinct
when R* < 1 by introducing the persistence theory and oscillation theory. We
also obtained threshold values for the parameters A, a, k,d, 72, N. These values are
important in determining if the virus can be eradicated from infected individuals.

Acknowledgments

This work is supported by the NNSF of China (No. 11171284), and pro-
gram for Innovative Research Team (in Science and Technology) in University
of Henan Province (2010IRTSTHNO006) and Innovation Scientists and Techni-
cians Troop Construction Projects of Henan Province (104200510011), and the
Natural Science Foundation of the Education Department of Henan Province
(No. 13A110775) (X. Wang and X. Song); and the NNSF of China (Nos. 61075037
and 10601042), the Fundamental Research Funds for the Central Universities
(No. HIT.NSRIF.2010052) and Program of Excellent Team in Harbin Institute of
Technology (S. Liu).

References

[1] R. M. Anderson and R. M. May, Epidemiology parameters of HIV transmission,
Nature 333 (1988) 514-519.
[2] S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug
therapy and virus load, J. Virol. 71 (1997) 3275-3278.
[3] S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug
therapy, Proc. Natl. Acad. Sci. USA 94 (1997) 6971-6976.
[4] S. Bonhoeffer and M. A. Nowak, Pre-existence and emergence of drug resistance in
HIV-1 infection, Proc. Roy. Soc. London B 264 (1997) 631-637.
[5] R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection
of CD4™ T-cells, Math. Biosci. 165 (2000) 27-39.
[6] J. M. Cushing, Integrodifferential Equations and Delay Models in Population
Dynamics (Springer, Heidelberg, 1977).
[7] R. J. De Boer and C. A. Boucher, Anti-CD4 therapy for AIDs suggested by mathe-
matical models, Proc. Roy. Soc. London B 263 (1996) 899-905.
[8] R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of
HIV infection: A comparison, J. Theor. Biol. 190 (1998) 201-214.
[9] S.F. Dowell, Seasonal variation in host susceptibility and cycles of certain infectious
diseases, Emerg. Infect. Diseases 7 (2001) 369-374.
[10] D.J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu, Trends
Ecol. Evol. 17 (2002) 334-340.
[11] K. Gopalsamy, Stability and Oscillations in Delay-Differential Equations of Popula-
tion Dynamics (Kluwer, Dordrecht, 1992).
[12] A. V.M. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral
dynamics in vivo: Limitations on estimates of intracellular delay and virus decay,
Proc. Natl. Acad. Sci. USA 93 (1996) 7247-7251.

1350030-24



Int. J. Biomath. Downloaded from www.worldscientific.com
by WSPC on 09/10/13. For personal use only.

(13]

A Non-Autonomous HIV-1 Infection Model with Delays

Y. Huang, S. L. Rosenkranz and H. Wu, Modelling HIV dynamics and antiviral
responses with consideration of time-varying drug exposures, sensitivities and adher-
ence, Math. Biosci. 184 (2003) 165-186.

Y. Kuang, Delay-Differential Equations with Applications in Population Dynamics
(Academic Press, New York, 1993).

S. J. Little, A. R. McLean, C. A. Spina, D. D. Richman and D. V. Havlir, Viral
dynamics of acute HIV-1 infection, J. Ezp. Med. 190 (1999) 841-850.

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular
delays and a combination therapy, Math. Biosci. Engrg. 7 (2010) 677-687.

W. London and J. A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps:
I. Seasonal variation in contact rates, Amer. J. Epidemiol. 98 (1973) 453-468.

Y. J. Lou and X. Q. Zhao, A climate-based malaria transmission model with struc-
tured vector population, STAM J. Appl. Math. 70 (2010) 2023-2044.

J. E. Mittler, B. Sulzer, A. Neumann and A. S. Perelson, Influence of delayed virus
production on viral dynamics in HIV-1 infected patients, Math. Biosci. 152 (1998)
143-163.

P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that
includes an intracellular delay, Math. Biosci. 163 (2000) 201-215.

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation
models of HIV-1 infection, Math. Biosci. 179 (2002) 73-94.

A. S. Perelson, Modelling viral and immune system dynamics, Nat. Rev.: Immunol.
2 (2002) 28-36.

A.S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz
and D. Ho, Decay characteristics of HIV-1-infected compartments during combination
therapy, Nature 387 (1997) 188-191.

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4™
T cells, Math. Biosci. 114 (1993) 81-125.

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,
STIAM Rev. 41 (1999) 3-44.

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1
dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation
time, Science 271 (1996) 1582-1585.

A. N. Phillips, Reduction of HIV concentration during acute infection: Independence
from a specific immune response, Science 71 (1996) 497-499.

L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistance during
anti-retroviral treatment, Bull. Math. Biol. 69 (2007) 2027-2060.

X. Song and S. Cheng, A delay-differential equation model of HIV infection of CD4™"
T-cells, J. Korean Math. Soc. 42 (2005) 1071-1086.

H. R. Thieme, Uniform weak implies uniform strong persistence also for non-
autonomous semiflows, Proc. Amer. Math. Soc. 127 (1999) 2395-2403.

H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows
in population biology, Math. Biosci. 166 (2000) 173-201.

X. Wang, S. Liu and L. Rong, Permanence and extinction of a non-autonomous HIV-1
model with two time delays, preprint.

X. Wang and Y. Tao, Lyapunov function and global properties of virus dynamics
with CTL immune response, Int. J. Biomath. 1 (2008) 443—-448.

X. Wang, Y. Tao and X. Song, A delayed HIV-1 infection model with Beddington—
DeAngelis functional, Nonlinear Dynam. 62 (2010) 67-72.

D. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term
immunological control of HIV, Proc. Natl. Acad. Sci. USA 96 (1999) 14,464-14,469.

1350030-25



Int. J. Biomath. Downloaded from www.worldscientific.com
by WSPC on 09/10/13. For personal use only.

X. Wang, S. Liu & X. Song

[36] D. Wodarz, K. Page, R. Arnaout, A. R. Thomsen, J. D. Lifson and M. A. Nowak,
A new theory of cytotoxic T-lymphocyte memory: Implications for HIV treatment,
Philos. Trans. Roy. Soc. London B 355 (2000) 329-343.

[37] T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology, Bull.
Math. Biol. 69 (2007) 2537-2559.

[38] T. Zhang and Z. Teng, Permanence and extinction for a non-autonomous SIRS epi-
demic model with time delay, Appl. Math. Model. 33 (2009) 1058-1071.

1350030-26



