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a b s t r a c t

A kind of consumer-resource system is proposed to describe the bidirectional interactions

of the algae and the fish in an eutrophic water body. The dynamical properties of the pro-

posed continuous system are given. For the bistable case, an impulsive semidynamical system

with state feedback control, which depends on the biomass of the algae, is formulated and

investigated to consider the feasibility of state feedback control for the aim of maintaining

two species coexisting. The impulsive semidynamical system has three cases corresponding

to three kinds of control measures: releasing fish, spraying algaecide, integrated control com-

bining releasing fish and spraying algaecide. The existences of order-1 periodic solutions of

three models are discussed by using successor function, respectively. The conditions under

which the order-1 periodic solution is stable are given by using the Poincaré map and the

analogue of Poincaré criterion. Mathematical results show that, for every one of three con-

trol strategies, there exists a range of control parameter in which the corresponding control

is feasible. Finally, those mathematical results are verified by numerical simulations and the

practical meanings are given.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The algae can fix inorganic carbon through photosynthesis and make them into carbohydrates, which provides the basis of

water productivity. As a producer in a fresh water ecological system, the algae is one of the food resource of the fish. But in an

eutrophic water body, some kinds of algaes can grow quickly and release toxin into the water body, which have negative effects

on the growth of the fish and other aquatic organisms. Therefore, the interactions of the fish and the algae are bidirectional. On

the other hand, for the aims of protecting the fish and other aquatic organisms, it is necessary to control the biomass of the algae.

There are various of measures to decrease the biomass of the algae. Chemical measure is quick to remove the algae, but it

can produce secondary pollution. It is generally believed that biological measure is safe. During the material transformation of

food chain, every 1 kg fish needs to consumer about 100 kilograms of planktonic algae. Therefore, releasing some algophagous

fish (e.g., Black carp, Grass carp) is one of the effective measures to control the excessive growth of algae in a fresh water. But

if the fish is excessively released, plankton community will be damaged. For example, in Wuhan East Lake of China, the large

amount of Grass carp were released to eliminate the water bloom and to increase the fishery production in 1970’s. The result is

that the plankton communities were damaged [1]. In order to avoid this situation and to maintain two species coexisting, it is
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necessary to carefully select the control measures and the relative control parameters (e.g., the amount of the released fish). In

this paper, we will formulate a kind of impulsive semidynamical system and consider the feasibility and periodicity of impulsive

state feedback control which depends on the biomass of the algae.

The bidirectional interactions of the algae and the fish are of consumer-resource(C-R) interactions. Holland and DeAngelis[2]

developed a general theory for transitions between outcomes based on C-R interactions in which one or both species exploit the

other as a resource. Simple models of C-R interactions indicated that the densities of the species alone could determine the fate

of interactions. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms,

the simple models which link consumer functional response of one mutualistic species with the resources supplied by another

is developed in paper [3]. Wang et al. [4] considered a predator-prey system of two species in which the predator consumes the

prey and the prey has a harmful effect on the predator. By phase-portrait analysis and numerical simulations, it is demonstrated

in paper [4] that interaction outcomes in the system may transition among predation, amensalism, competition, neutralism

and commensalism. Varying initial densities of species population alone and varying one or more parameters (factors) can lead

to the transition. Pal et al. [5] studied the effect of nutrient concentration and rate of toxin released by phytoplankton for the

occurrence and termination of the planktonic bloom. Upadhyay et al. [6] investigated the dynamical complexities in two types

of chaotic tri-trophic aquatic food-chain systems, where phytoplankton produce chemical substances known as toxins to reduce

grazing pressure by zooplankton. There still are some references to investigate the C-R models, one can read the above papers

and the references therein. Most of those models given in the above references considered the continuous models which have

no the terms of impulsive state feedback control. We will consider an algae-fish system with impulsive state feedback control in

which the algae as a food resource has negative effect on its consumer.

The ordinary differential equation with impulsive state effects is called as impulsive semidynamical system in Ref. [7] and

semicontinous dynamical system in paper [8]. In those impulsive system, the conditions of impulsive effects depend on the state

of the variables. The researchers have applied the impulsive semidynamical system on the biological mathematics fields, such

as population system, turbidostat system and chemstat system. For examples, Tang and Cheke [9] proposed a state-dependent

impulsive model for integrated pest management (IPM) and proved that there is no periodic solution with order larger than

or equal to three, except for one special case, by using the properties of LambertW function and Poincaré map. Moreover, it is

showed that the existence of an order two periodic solution implies the existence of an order one periodic solution [9].

Jiang and Lu [10] and Nie et al. [11] formulated and investigated the predator-prey models with impulsive state feedback

control. The sufficient conditions for the existence and stability of semi-trivial solution and positive period-1 solution are ob-

tained by using the Poincaré map and the analogue of the Poincaré criterion. Zeng et al. [12] generalized the Poincaré-Bendixson

theorem of ordinary differential equation and gave an existence theorem of periodic solution of order one for a general planar

autonomous impulsive system. Based on the ideas given in paper [12], some turbidostat systems and chemostat systems with

impulsive state feedback control were proposed to investigate the periodicity of microorganism culture (e.g., [13–16]). Subse-

quently, Chen [8] gave the general ideas and methods such as the successor function to study the planar autonomous impulsive

system. By using the successor function method, some mathematical models with impulsive state feedback control were for-

mulated and investigated(e.g., [17–20]). The models in those papers have either the first integral or the stable equilibrium, or

the limit cycle. But a few papers considered the impulsive semidynamical system with bistable property in which the positive

equilibrium is a saddle point.

This paper will propose a kind of impulsive semidynamical system with bistable property to describe the evolution process

of the algae and the fish under impulsive state feedback control, try to consider the feasibility and periodicity of impulsive state

feedback control by investigating the existence and stability of periodic solution.

The rest of this paper is organized as follows. In Section 2, we will introduce a kind of simple consumer-resource system

which can be viewed as a Kolmogorov-type system, and analyze its dynamical properties. For the bistable case, an impulsive

semidynamical system is formulated. Some definitions and lemmas, the Poincaré map and the analogue of Poincaré criterion

are also given in Section 2. The case of single releasing fish is discussed in Section 3 and the case of single chemical control is

investigated in Section 4. The integrate control combining releasing fish and spraying algaecide is discussed in Section 5. Section 6

gives the numerical simulations and discussions.

2. Model formulation and preliminaries

2.1. Basic model

Since the fish consumes the algae and the algae has the negative effect on the fish, then we can use the consumer-resource(C-

R) interaction model [2,3] to describe the bidirectional interactions of the algae and the fish. One of the bidirectional C-R inter-

action models can be written as the following form [21].⎧⎨⎩
dx1

dt
= x1(r1 + f1(R1(x1, y1)) − g1(R2(x1, y1)) − d1x1),

dy1

dt
= y1(r2 − g2(R1(x1, y1)) − d2y1),

(2.1)

where x1 = x1(t) is assumed to be the consumer and y1 = y1(t) the resource. The consumer x1 feeds on the resource y1. The

resource y has negative effect on the consumer x . The ratios r /d and r /d can be thought of as the carrying capacities in
1 1 1 1 2 2
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Fig. 1. The vector diagram of system (2.4) for a12 > 1, a21 > 1.
the absence of the other species. The term f1(R1(x1, y1)) represents its gain from the interaction, and gi(Rj(x1, y1)) (i, j = 1, 2)
represents the costs incurred to it by the interaction [21]. R1(x1, y1) represents the interactions of predation and R2(x1, y1) the

negative effects.

Since the functions f1(R1(x1, y1)), g1(R2(x1, y1)) and g2(R1(x1, y1)) have different possible forms (see Refs. [21,22]), and dif-

ferent combinations of the functions result in different dynamical complexities. In order to reveal clearly the effects of impul-

sive state feedback control on the system with bistable property, we choose ki = ri/di(i = 1, 2), f1(R1(x1, y1)) = c1g1(R2(x1, y1)),

g1(R2(x1, y1)) = b12
r1

y1 and g2(R1(x1, y1)) = b21
r2

x1, then system (2.1) has the following form.⎧⎪⎨⎪⎩
dx1

dt
= r1x1

(
1 − x1

k1

+ c1b21y1 − b12y1

)
,

dy1

dt
= r2y1

(
1 − y1

k2

− b21x1

)
,

(2.2)

where x1 = x1(t) and y1 = y1(t) are assumed to be the biomass of the fish (the consumer) and the algae (the resource) in a fresh

water body (e.g., a reservoir). r1, r2, k1, k2, b12 and b21 are the positive constants. r1 and r2 are the intrinsic growth rates of the

fish and the algae in the absence of the other species, which implies that one species can maintain itself without the other one;

k1 and k2 are the corresponding environment carrying capacities; c1 is the conversion rate from the algae to the fish; b21 is the

loss rate of the algae owing to the predation of the fish; b12 is the reduce rate of growth owing to the negative effect of the algae

on the fish.

System (2.2) is of the classical Kolmogorov model, it can be viewed as a competitive model if b12 − c1b21 > 0, a predator-prey

model if b12 − cb21 < 0.

In order to discuss the effects of impulsive state feedback on the bistable system, we assume that b12 − cb21 > 0 and let

x = x1

k1

, y = y1

k2

, t = r1t1, b = r2

r1

, a12 = (b12 − cb21)k2, a21 = b21k1, (2.3)

then system (2.2) becomes⎧⎨⎩
dx

dt
= x(1 − x − a12y),

dy

dt
= by(1 − y − a21x).

(2.4)

It is easily obtained that system (2.4) has four equilibria: (0, 0), (0, 1), (0, 1) and (x∗, y∗) where

x∗ = 1 − a12

1 − a12a21

, y∗ = 1 − a21

1 − a12a21

.

The equilibrium (x∗, y∗) is a saddle point and system (2.4) is bistable for a12 > 1, a21 > 1(see Ref.[23]). In this case, only one of two

species can survive and the other one tends to be extinct, which is determined by their initial values. The illustration of vector

diagram of system (2.4) for a12 > 1, a21 > 1 can be seen in Fig. 1.

Since the equilibrium (x∗, y∗) is a saddle point for a12 > 1, a21 > 1, then system (2.4) has four saddle point separatrixes(denoted

by s1, s2, s3, s4, respectively) which divide the first quadrant into four regions (see Fig. 2), denoted by Q1, Q2, R1, R2, respectively,

and let Q = Q1 + Q2, R = R1 + R2.

It is easily known that the trajectories tend to the equilibrium (0, 1) and the fish species x tends to be extinct if the initial point

lies in the region Q, the trajectories tend to the equilibrium (1, 0) and the algae species y tends to be extinct if the initial point lies

in the region R. From the perspective of protecting the diversity of species in a habitat, the above two cases are not what we want
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Fig. 2. The saddle point separatrixes of system (2.4) for a12 > 1 and a21 > 1.
to see. We hope that some control strategies are taken to prevent them from extinction and to maintain the biomass of them in

a suitable region.

2.2. Model formulation

We want to consider the feasibility of controlling the excessive growth of the algae and preventing the fish from extinction

by using the impulsive state feedback control. The researchers have presented and designed the early warning systems and the

monitoring systems to monitor the biomass of the algal and other factors which can cause the algal blooms [24,25]. For example,

Cheng [25] has investigated and presented the early warning system of algal development in Lake Dianshan, China. The first alert

level (early warning) and the second alert level (bloom warning) of the algal were presented in Ref. [25]. When the biomass of

the algal reaches the first alert level or the second alert level, some measures should be taken to control the algal. The control

measures to the algae mainly have chemical method (e.g., spraying algaecide), mechanical method, biological and ecological

method (e.g., releasing fish), flocculation method (using flocculant) and so on. We mainly consider the following measures:

1. Spraying algaecide. By using this control measure, the amount of the algae is decreased proportionally, and the increment

of the algae in system (2.2) can be written as �y1 = y+
1

− y1 = −β1y1 where y+
1

is the population of the algae after spraying

algaecide, 0 ≤ β1 < 1.

2. Releasing fish. By the activity of releasing fish, the biomass of the fish is added. Usually, the amount of the released fish is

constant and the increment of the fish in system (2.2) can be written as �x1 = x+
1

− x1 = p1 where x+
1

is the biomass of the

fish after releasing fish. p1 ≥ 0 is a constant.

Our aim is to maintain the biomass of the fish and the algae in a suitable region where the biomass of the algae is less than

the threshold value, therefore we will discuss system (2.4) in the region Q = Q1 + Q2. In the region Q, if no control measure is

taken, then the algae reaches its environmental carrying capacity and the fish tends to be extinct. Suppose that the above control

measures are taken when the biomass of the algae reaches a threshold value denoted by h1(e.g., the first alert level or the second

alert level given in Ref. [25]). By using the same dimensionless transformation (2.3) and let h = h1
k1

, β = β1,p = p1
k2

, then system

(2.2) incorporating the impulsive state feedback control has the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx

dt
= x(1 − x − a12y),

dy

dt
= by(1 − y − a21x),

⎫⎪⎬⎪⎭ y < h,

�x = p,

�y = −βy,
y = h,

y(0) < h.

(2.5)

where p ≥ 0, 0 ≤ β < 1,�x = x+ − x,�y = y+ − y, and

x+ = x(t+
k
) = lim

h→0+
x(tk + h), y+ = y(t+

k
) = lim

h→0+
y(tk + h).

The feasibility and periodicity of the impulsive state feedback control can be given by discussing the existence and stability

of order-1 periodic solution of system (2.5). For system (2.5), if β = 0 or p = 0, then it implies that only one control is taken. That

is, only the activity of releasing fish is performed if β = 0 and p �= 0. Similarly, only the measure of spraying algaecide is taken if

p = 0 and β �= 0.

We will discuss the existence and stability of order-1 periodic solution of system (2.5) for three cases: (1) β = 0, p > 0 , (2)

p = 0, 0 < β < 1 and (3) 0 < β < 1, p > 0, respectively.
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Fig. 3. The illustration of two kinds of order-1 periodic cycle of system (2.5).
2.3. Preliminaries

System (2.5) is of impulsive semidynamical system. The definitions of impulsive semidynamical system can be found in

Ref. [7]. Here only gives some definition and notations. More details can be seen in Ref. [7].

Definition 2.1 (Lakshmikantham, et al. [7]). A trajectory π̃x is said to be periodic of order k if there exist positive integers m ≥ 1

and k ≥ 1 such that k is the smallest integer for which x+
m = x+

m+k
.

The impulsive set of system (2.5) is M = {(x, y)|y = h} and its image set is N = {(x, y)|y = (1 − β)h}. Without distinction, we

sometimes call the line y = h the impulsive set and the line y = (1 − β)h the image set.

For any point P ∈ {(x, y)|x > 0, y > 0}, we give the following notations for simplicity.

• πP(t) = π(P, t): the trajectory starting from the point P.

• π+(P) = {π(P, t)|0 ≤ t < +∞}: the positive semi-trajectory starting from the point P.

• π−(P) = {π(P, t)| − ∞ < t ≤ 0}: the negative semi-trajectory starting from the point P.

• π1(P): the first intersection point of π+(P) and M, that is, there exists a t1 ∈ R+ such that π1(P) = π(P, t1) ∈ M, and for 0 <

t < t1, π (P, t) �∈ M.

• xP: the abscissa of the point P and yP the ordinate.

• P+: If P ∈ M, then the impulsive effect occurs at the point P, the impulsive functions ψ(x, y) = (�x,�y) transfers the point

P into P+.

Definition 2.2 [8,26]. A trajectory π̃(P, t) is called order-1 periodic solution with period T if there exist a point P ∈ N and T > 0

such that π(P, T) = Q ∈ M and ψ(Q) = ψ(π(P, T)) = P ∈ N. The trajectory π̃(P, t) linking with the impulsive line segment QP is

also called an order-1 cycle. If the order-1 cycle has a singularity, then it is called an order-1 singular cycle.

Definition 2.3. Assume that system (2.5) has an order-1 periodic solution π̃(A, t) with period T and A ∈ N, if π̃(A, t) is

monotonous with respect to a variable (x or y) and π̃(A, t) ∩ N = ∅, t ∈ (0, T), then π̃(A, t) is called as the order-1 periodic

solution of type I, denoted by �1. If π̃(A, t) is not monotonous and π̃(A, t) ∩ N �= ∅, t ∈ (0, T). That is, if the number of the in-

tersection point of y = (1 − β)h and π̃(A, t), t ∈ (0, T) is one, then π̃(A, t) is called as the order-1 periodic solution of type II,

denoted by �2 (see Fig. 3).

In order to investigate the qualitative properties of system (2.5), we need introduce the definitions of successor point and

successor function.

Definition 2.4 [8,18]. Let M and N be the lines where the impulsive set and its image set lie on, respectively (see Fig. 4(a)). Define

a new coordinate axis O′ on the line N, the direction and length unit of the new coordinate axis are the same as those of the

axis-x. For any point A(x, y) ∈ N, x > 0, y > 0, the new coordinate of A(x, y) denotes by l(A) and l(A) = x.

For any point A(x0, y0) ∈ N, the trajectory π (A, t) of system (2.5) hits the impulse set M, and then jumps to A1(x1, y1) ∈
N, where y0 = y1 = (1 − p)h, then the point A1 is said to the success point of A, and the success function can be written as

f (A) = l(A1) − l(A) = x1 − x0.

According to the continuity of compound function, we know that the successor function f(A) is continuous. Obviously, if

f (A) = 0, then the trajectory π (A, t) is an order-1 periodic solution π̃(A, t) of system (2.5).

2.4. Poincaré map

According to the ideas of Ref. [10], the followings establish a kind of Poincaré maps to discuss the stability of periodic solution

of system (2.5). Firstly, let S1 = {(x, y)|y = h, x ≥ 0} be the Poincaré section. Suppose system (2.5) has an order-1 periodic solution

(φ(t), ϕ(t)) with period T (see Fig. 4(b)). The periodic trajectory with initial point E+(x , (1 − β)h) intersects the Poincaré section
0
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Fig. 4. The illustration of the success function and the Poincaré map of system (2.5).
S1 at the point E(x1, h), then jumps to the point E+ on the line S0 = {(x, y)|y = (1 − β)h, x ≥ 0} under the impulsive effects �x = p

and �y = (1 − β)h. Therefore,

φ(0) = x0, ϕ(0) = (1 − β)h, φ(T) = x1, ϕ(T) = h.

Consider another solution (φ(t), ϕ(t)) with initial point A0(x0 + δx0, (1 − β)h), where δx0 is small enough. This disturbed

trajectory π+(A0) first intersects the Poincaré section S1 at the point B0(x1, h) at the moment t = T + δt and then jumps to the

point A1(x, (1 − β)h) on the line S0. Hence,

φ(0) = x0 + δx0, ϕ(0) = (1 − β)h, φ(T + δt) = x1, ϕ(T + δt) = h.

Let δx = φ(t) − φ(t) and δy = ϕ(t) − ϕ(t), then δx0 = φ(0) − φ(0) = |A0E+| and δy0 = ϕ(0) − ϕ(0) = 0. Set δx1 = |A1E+|
and δx∗

0
= |B0E|, and then the relation between δx0 and δx∗

0
determines one type of Poincaré map. For 0 < t < T, δx and δy are

described by the following equation.(
δx(t)
δy(t)

)
= M(t)

(
δx0

δy0

)
+ o(δx2

0 + δy2
0) = M(t)

(
δx0

0

)
+ o

(
δx2

0

0

)
, (2.6)

where the fundamental solution matrix M(t) satisfies the variational equation

dM(t)

dt
= V(t)M(t), M(0) = I2, (2.7)

where I2 is the unit matrix of second order, the elements of V(t) can be calculated along the periodic trajectory (φ(t), ϕ(t)) and

V(t) =
(

1 − 2φ(t) − a12ϕ(t) −a12φ(t)
−ba21ϕ(t) b(1 − 2ϕ(t) − a21φ(t))

)
. (2.8)

Let f1(t) = φ(t)(1 − φ(t) − a12ϕ(t)), f2(t) = bϕ(t)(1 − ϕ(t) − a21φ(t)). For t = T + δt, the disturbed trajectory (φ(t), ϕ(t))
is expressed in the following first-order Taylor expansion:{

φ(T + δt) ≈ φ(T) + δx(T) + f1(T)δt,
ϕ(T + δt) ≈ ϕ(T) + δy(T) + f2(T)δt.

(2.9)

It follows from ϕ(T + δt) = h and ϕ(T) = h that we have

δt = −δy(T)

f2(T)

and

δx∗
0 = |B0E| = x1 − x1 = φ(T + δt) − φ(T) = δx(T) − f1(T)δy(T)

f2(T)
.

From x̄ = x̄1 + p, we have x̄ − x0 = x̄1 + p − (x1 + p) = x̄1 − x1, that is, δx1 = δx∗
0
. The Poincaré map is constructed as

δx1 = δx(T) − f1(T)δy(T)

f2(T)
, (2.10)

where δx(T) and δy(T) are calculated according to (2.6).

Lemma 2.5 (Analogue of the Poincaré criterion [27]). The T-periodic solution x = ξ(t), y = η(t) of the system{
dx

dt
= P(x, y),

dy

dt
= Q(x, y), i f φ(x, y) �= 0,

�x = A(x, y),�y = B(x, y), i f φ(x, y) = 0



H. Guo et al. / Applied Mathematics and Computation 271 (2015) 905–922 911

Fig. 5. The existence of order-1 singular cycle for β = 0, p > 0 and h > y∗ .
is orbitally asymptotically stable and enjoys the property of asymptotic phase if the multiplier μ2 satisfies the condition |μ2| < 1,

where

μ2 =
q∏

k=1

�k exp

[∫ T

0

(
∂P

∂x
(ξ(t), η(t)) + ∂Q

∂y
(ξ(t), η(t))

)
dt

]
,

�k =
P+

(
∂B
∂y

∂φ
∂x

− ∂B
∂x

∂φ
∂y

+ ∂φ
∂x

)
+ Q+

(
∂A
∂x

∂φ
∂y

− ∂A
∂y

∂φ
∂x

+ ∂φ
∂y

)
P ∂φ

∂x
+ Q ∂φ

∂y

and P, Q, ∂A
∂x

, ∂A
∂y

, ∂B
∂x

, ∂B
∂y

,
∂φ
∂x

,
∂φ
∂y

are calculated at the point (ξ (τ k), η(τ k)) and P+ = P(ξ(τ+
k
), η(τ+

k
)), Q+ = Q(ξ(τ+

k
), η(τ+

k
)).

If h < y∗, since dx
dt

> 0 for the points in the region where x < 1 and y < 1, then we have the following theorem and omit the

proof.

Theorem 2.6. If h < y∗, then the trajectories starting from the region where x < 1 and y < h will tend to (1,0) after at most finite times

impulsive effects.

Therefore, the followings always assume that h > y∗. Assume that the line y = h intersects the axis-y, two separatrixes s1,

s2 and the isoclinal line dy
dt

= 0 at the points M1, A, C, B, respectively (see Fig. 5), let A = A(xA, h), B = B(xB, h),C = C(xC, h), p∗
1

=
xC − xA, p∗

2 = xC − xB where xB = 1−h
a21

.

Denote the region we consider by G and G = G1 + G2 where G1 ∈ Q1 be the region whose boundary consists of the line y = h,

the separatrixes s1 and s2; G2 ∈ Q2 be the region whose boundary consists of axis-y, the line y = h and the separatrixes s4 and s1

(see Fig. 5).

We want to know whether the trajectories starting from the region G can stay there for a given value of p or β .

3. Order-1 periodic solution for β = 0 and p > 0

If β = 0 and p > 0, that is, only the activity of releasing fish is performed, then the impulsive functions of system (2.5) are

�x = p and �y = 0.

Theorem 3.1. If a12 > 1, a21 > 1, h > y∗, β = 0 and p > 0, then there is a value p∗
1

such that system (2.5) has an unstable order-1

singular cycle for p = p∗
1
.

Proof. From the qualitative properties of system (2.5) without the impulsive effects, we know that all the trajectories starting

from the points in the region G = G1 + G2 and y∗ < y(0) < h hit the impulsive set M at the line segment M1B where 0 ≤ x ≤ xB

and y = h.

If β = 0, since the impulsive set M and its image set N coincide (see Fig. 5), then it is obvious that there is a value p∗
1

= xC − xA

such that the order-1 singular cycle OACO exists and consists of the arc , the line segment AC ,the arc and the equilibrium

O, where the arcs and are on the separatrixes s1 and s2, respectively.

If p = p∗
1
, then the trajectories starting from the region G2 will go into the region G1 after several impulsive effects. The

trajectories starting from G1 will hit the impulsive set M at the right neighborhood of point A on the line segment M1B, and jump

to the region R1, subsequently tend to the equilibrium (1, 0). Since the trajectories cannot go back to region G after one impulsive

effect, it is obvious that the singular cycle OACO is unstable. This completes the proof. �
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Fig. 7. The existence of order-1 periodic solution of system (2.5) for p < p∗
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Fig. 8. The illustration of the uniqueness of order-1 periodic solution for p < p∗
2, β = 0 and h > y∗ .
From Theorem 3.1, we know that if p ≥ p∗
1

= xC − xA, then the trajectories starting from the region G will go into the region

R1 after several impulsive effects, and tend to the equilibrium (1, 0). This implies that the initial state and the dominant position

of the species can be changed if the larger amount of the fish are released.

If p∗
1

> p ≥ p∗
2

= xC − xB, then there is a point D1 such that |CD1| = p > p∗
2
, the trajectory π−(D1) intersecting the line seg-

ment BC at a point D. Further, the region G1 can be divided into two regions G11 and G12 by the trajectory π+(D) between the

points π1(D) and D, where the boundary of the region G11 consists of the line segment DD1 and the trajectory of π+(D)(see

Fig. 6). The trajectories starting from the region G11 will go into the region R1 and the trajectories starting from the region G12

retain here. Therefore, in the following, we will consider the existence and stability of order-1 periodic solution for p < p∗
2 in the

region G.

Theorem 3.2. System (2.5) has an unique orbitally asymptotically stable order-1 periodic solution for a12 > 1, a21 > 1, h > y∗ and

β = 0 if p < p∗
2

where p∗
2

= xC − xB.

Proof. If p < p∗
2
, then there is a point D in the line segment BC satisfying |BD| = p. The trajectory π+(D) starting from the point

D hits the impulsive set at the point D1 and is mapped to the point D+
1
, then we have that xA < xD1

< xB and xB < xD+
1

< xD. Since

the point D+
1

is the successor point of D, then the successor function f (D) = xD+
1

− xD < 0(see Fig. 7).

For the point D+
1
, the trajectory π+(D+

1
) hits the impulsive set at the point D2 and then jumps to the point D+

2
under the impul-

sive effect. The point D+
2

is the successor point of D+
1

and xD+
2

> xD+
1

since xD2
> xD1

. Further, f (D+
1
) = xD+

2
− xD+

1
> 0. Therefore,

there must be a point E between D+
1

and D such that f (E) = 0 which implies that system (2.5) has an order-1 periodic solution

π̃E(t) starting from the point E.

For p < p∗
2
, suppose that there are two order-1 periodic solutions π̃E1

(t) and π̃F1
(t) starting from the points E1 and F1, respec-

tively(see Fig. 8). Without loss of generality, assume that two order-1 periodic solutions hit the impulsive set at the points E and
2
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F2, respectively. The points E2 and F2 are on the line segment AB. The points E1 and E2 are on the same trajectory π̃E1
(t), the points

F1 and F2 are on the same trajectory π̃F1
(t). Since the trajectories of autonomous system cannot intersect, then it should be that

xE2
< xF2

< xF1
< xE1

. But according to the impulsive function �x = p, we know that xE1
= x+

E2
= xE2

+ p < xF2
+ p = x+

F2
= xF1

,

which concludes a contradiction. Therefore, system (2.5) has an unique order-1 periodic solution for p < p∗.

The followings discuss the stability of the order-1 periodic solution. Denote the order-1 periodic solution by π̃E(t) which

starts from the point E and intersects the line segment AB at the point F. Consider the successor point D+
1

of D(see Fig. 7), we

know that xD1
< xF < xB and xB < xD+

1
< xE < xD. The trajectory π+(D+

1
) must intersect the impulsive set again at the point D2

and then be mapped to the point D+
2

which is the successor point of D+
1

. Because the trajectories cannot intersect, we can easily

know that xF < xD2
< xB and xE < xD+

2
< xD.

Similarly, the trajectory π+(D+
2
) must intersect the impulsive set again at the point D3 and then be mapped to the point D+

3
which is the successor point of D+

2
. We have that xD1

< xD3
< xF < xD2

< xB and xD+
1

< xD+
3

< xE < xD+
2

< xD.

Repeating the above steps, the trajectory starting from the point D will undergo the impulsive effect infinitely times. Denote

the image point corresponding to the ith impulsive effect by D+
i
, i = 1, 2, . . . . It follows that

xD+
1

< xD+
3

< · · · < xD+
2k−1

< · · · < xE

and

xD+
2

> xD+
4

> · · · > xD+
2k

> · · · > xE .

Thus {xD+
2k−1

}, k = 1, 2, . . . , is a monotonically increasing sequence, and {xD+
2k

}, k = 1, 2, . . . , is a monotonically decreasing

sequence (see Fig. 7), and furthermore, xD+
2k+1

→ xE as k → ∞; xD+
2k

→ xE as k → ∞.

Choose an arbitrary point P0 in the line segment D+
1

D, which is different from the point E. Without loss of generality, we

assume that xD+
1

< xP0
< xE(otherwise, xE < xP0

< xD and the argument is similar). There must exist an integer k such that

xD+
2k−1

< xP0
< xD+

2k+1
, k = 1, 2, . . .. The trajectory π+(P0) will also undergo infinite times impulsive effects. Denote the image point

corresponding to the lth impulsive effect by P+
l

, l = 1, 2, . . . , then for any l, xD2k+l−1
< xPl

< xD2k+l+1
and xD+

2k+l−1
< xP+

l
< xD+

2k+l+1
,

and thus the sequence {xP2l−1
}, l = 1, 2, . . . , is monotonically increasing, and the sequence {xP+

2l
}, l = 1, 2, . . . , is monotonically

decreasing, further xP+
2l+1

→ xE as l → ∞; xP+
2l

→ xE as l → ∞.

Therefore, in either case, the successor points of the image points tend to the point E, which implies that the order-1 periodic

solution of system (2.5) is orbitally asymptotically stable. This completes the proof. �

Remark 3.3. Assume that the arc is the trajectory of the order-1 periodic solution for p = p1 < p∗
2. With p decreasing, let

p = p2 < p1 < p∗
2, then the order-1 successor point E2 of E is on the left of the point E for p = p2 < p1. According to the ideas and

proof of Theorem 3.2, system (2.5) also has an unique order-1 periodic solution for p = p2. Besides, the points E and F are close

to the point B with p decreasing. With p decreasing and p → 0, the trajectory contracts along the direction to the point B.

Remark 3.4. Since the impulsive set coincides with its image set at the line y = h, if p is small enough, the trajectories starting

from the region G2 will hit the impulsive set M at a point and the point will jump continuously along the line y = h until the

point reaches the right side of the point B.

4. Order-1 periodic solution for p = 0 and 0 < β < 1

If p = 0 and 0 < β < 1, then the impulsive functions of system (2.5) are �x = 0 and �y = −βy. It is obvious that the trajectories

starting from the region G1 will go into the region G2 after several impulsive effects. Therefore, we will mainly consider the

existence of order-1 periodic solution in the region G2.

Theorem 4.1. If h > y∗, a12 > 1, a21 > 1, p = 0 and 0 < β < 1, then there is a value β∗ such that system (2.5) has an unstable order-1

singular cycle for β = β∗ and (1 − β)h < y∗.

Proof. Since (1 − β)h < y∗, then we can assume that the image set N = {(x, y)|y = (1 − β)h} intersects with the separatrix s4

at the point E (see Fig. 9). Obviously, there exists a value β∗ such that xA = xE for β = β∗ where A is the intersection point of

the impulsive set M = {(x, y)|y = h} and the separatrix s1. For β = β∗, the point near the equilibrium O along the separatrix s1

reaches the point A, jumps to the point E and then tends to the equilibrium O along the separatrix s4. Therefore, the order-1

singular cycle consists of the arc , the line segment AE, the arc and the equilibrium O for p = 0 and β = β∗. Similar to the

proof of Theorem 3.2, it can also verify that the order-1 singular cycle is unstable. This completes the proof. �

Theorem 4.2. If a12 > 1, a21 > 1, p = 0 and 0 < β < 1, then system (2.5) has an boundary order-1 periodic solution.

If (1 − β)h ≥ 1
a12

, then the boundary order-1 periodic solution is stable.

If (1 − β)h < 1
a12

, then the boundary order-1 periodic solution is unstable.
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Fig. 9. The existence of order-1 singular cycle of system (2.5) for p = 0 and h > y∗ .
Proof. To discuss the existence of the boundary periodic solution, let x = 0, then system (2.5) becomes⎧⎪⎪⎨⎪⎪⎩
dy

dt
= by(1 − y), y < h,

�y = −βy, y = h,

y(0) < h.

(4.1)

For t ∈ (tk−1, tk] and y(tk) = h, k = 1, 2, . . . , it follows that

y(t) = y+
k

y+
k

− (y+
k

− 1)e−b(t−tk)
, t ∈ (tk−1, tk],

where y+
k

= y(t+
k
) and t+

k
is the initial impulsive moment for t ∈ (tk−1, tk], k = 1, 2, . . .. Since y(tk) = h and y+

k
= (1 − β)h, then

we can obtain the boundary periodic solution of system (4.1) as follows:

ỹ(t) = (1 − β)h

(1 − β)h − ((1 − β)h − 1)e−b(t−kT)
,

where T is the period of the periodic solution ỹ(t), that is, tk = tk−1 + T, k = 1, 2, . . . and

T = 1

b
ln

(1 − β)h − 1

(1 − β)(h − 1)
.

Therefore system (2.5) has a boundary periodic solution (0, ỹ(t)). The followings discuss the stability of (0, ỹ(t)) by using the

Poincaré map. From Eq. (2.7), it follows that φ(t) = 0, ϕ(t) = ỹ(t) and

dM(t)

dt
=

(
1 − a12ỹ(t) 0
−ba12ỹ(t) b(1 − 2ỹ(t))

)
M(t), M(0) = I2. (4.2)

Let

M(t) =
(

m(t) n(t)
u(t) v(t)

)
,

then Eq. (4.2) can be rewritten as the following form for 0 < t < T,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dm(t)

dt
= (1 − a12ỹ(t))m(t), m(0) = 1,

dn(t)

dt
= (1 − a12ỹ(t))n(t), n(0) = 0,

du(t)

dt
= ( − ba12ỹ(t))m(t) + b(1 − 2ỹ(t))u(t), u(0) = 1,

du(t)

dt
= ( − ba12ỹ(t))n(t) + b(1 − 2ỹ(t))v(t), v(0) = 0.

(4.3)

Since δy0 = 0 and f1(T) = 0 × (1 − 0 − a12ϕ(t)), it is only need to calculate m(t). From the first equation of Eq.(4.3), we have

m(t) = exp

(
t − a12t − a12

b
ln ((1 − β)h − ((1 − β)h − 1)e−bt)

)
. (4.4)
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> (1 − β)h > y∗ and β∗ < β < β∗ .
In view of Eq. (2.6), we have

δx(T) = m(T)δx0,

where

m(T) = exp

(
T − a12T − a12

b
ln ((1 − β)h − ((1 − β)h − 1)e−bT )

)
. (4.5)

Obviously, δx0 = 0 is a fixed point of δx(T) = m(T)δx0.

Consider the expression of the period T, let

g(β) = 1

1 − β

(
1 − h

1 − (1 − β)h

)a12−1

.

If g(β) < 1 holds, then 0 < m(T) < 1. Furthermore, δx0 = 0 is a stable fixed point and system (2.5) has a stable boundary order-1

periodic solution.

Since β ∈ (0, 1), then we have that g(0) = 1 and g(1) = +∞. From

∂g(β)

∂β
= (1 − h)a12−1(1 − (1 − β)h)a12−2(1 − (1 − β)ha12),

we know that ∂g(β)
∂β

= 0 if 1 − (1 − β)ha12 = 0. ∂g(β)
∂β

< 0 and g(β) < 1 if 1 − (1 − β)ha12 < 0 (that is (1 − β)h > 1
a12

). ∂g(β)
∂β

> 0

and g(β) > 1 if 1 − (1 − β)ha12 > 0. Therefore, the boundary periodic solution (0, ỹ(t)) of system (2.5) is stable if (1 − β)h ≥ 1
a12

,

unstable if (1 − β)h < 1
a12

. This completes the proof. �

Remark 4.3. Since (1 − β)h < 1
a12

must hold if h < 1
a12

, then the boundary order-1 periodic solution (0, ỹ(t)) of system (2.5)

must be unstable for h < 1
a12

.

From Theorem 4.1, we know that if β > β∗, then all the trajectories starting from the region G2 will enter the region R2

after several impulsive effects and tends to the equilibrium (1,0). Therefore, the followings will consider the existence of order-1

periodic solution for β∗ < β < β∗, where β∗ = 1 − 1
a12h

.

For β∗ < β < β∗, the positions of the impulsive set M and its image set N have the following cases:

(1) h > 1
a12

> (1 − β)h > y∗;

(2) h > 1
a12

, (1 − β)h < y∗;

(3) h < 1
a12

, (1 − β)h > y∗;

(4) h < 1
a12

, (1 − β)h < y∗.

Because the proofs of the existence of order-1 periodic solution for above four cases are similar, we only consider the case of

h > 1
a12

> (1 − β)h > y∗.

Theorem 4.4. If h > 1
a12

> (1 − β)h > y∗, a12 > 1, a21 > 1, p = 0, then system (2.5) has an unique stable order-1 periodic solution

for β∗ < β < β∗ where β∗ = 1 − 1
a12h

.

Proof. If β∗ < β < β∗, see Fig. 10, the trajectories starting from the region G1 will enter the region G2 after several impulsive

effects. Hence, we only consider the trajectories starting from the region G2.

On the image set N = {(x, y)|y = (1 − β)h}, choose an arbitrary point A1 close to the point (0, (1 − β)h) sufficiently. The

trajectory π+(A1) will hit the impulsive set M at the point A2, and then jumps to the point A3. Since β > β∗, xA1
small enough

and xA2
= xA3

, then xA1
< xA2

= xA3
. Further, we have that the successor function f (A1) = xA3

− xA1
> 0 (see Fig. 10).
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Fig. 11. Two kinds of order-1 singular cycles.
Choose a point B1 (B1 ∈ N) close to the separatrix s1 sufficiently, the trajectory π+(B1) hits the impulsive set M at the point

B2 and then jumps to the point B3 which is the successor point of B1. Since β < β∗ and dx
dt

|s1
< 0, then xB1

> xB3
. Further, the

successor function f (B1) = xB3
− xB1

< 0. Therefore, there must be a point C1 between A1 and B1 such that the successor function

f (C1) = 0, and further system (2.5) has an order-1 periodic solution for β∗ < β < β∗.

From the above discussions, we know that |A1B1| > |A3B3|. Since the trajectories cannot intersect, then we have

|A1B1| > |A3B3| > |A5B5| > · · · > |A2k−1B2k−1| > · · · , k = 1, 2, . . . ,

where A2k+1 and B2k+1 are the corresponding successor points of A2k−1 and B2k−1, k = 1, 2, . . . , respectively. Besides, since

f (xA2k−1
) > 0, f (xB2k−1

) < 0 and

|A2k+1B2k+1| = xB2k+1
− xA2k+1

= f (xB2k−1
) + xB2k−1

− f (xA2k−1
) − xA2k−1

= f (xB2k−1
) − f (xA2k−1

) + |A2k−1B2k−1| =: F(|A2k−1B2k−1|),
then |A2k+1B2k+1| < |A2k−1B2k−1| and F(|A2k−1B2k−1|) is a strictly monotonic compression map which has an unique fixed point.

Further, we know that |A2k−1B2k−1| → 0 as k → +∞ since |AkBk| ≥ 0. Therefore, the order-1 periodic solution is unique if it exists.

From the bistable property and the continuous dependence of solution on the initial value, we can discuss the stability of

order-1 periodic solution by discussing the successor point in the image set. Assume that the arc be the trajectory of order-1

periodic solution (see Fig. 10).

For arbitrary given ε > 0, take δ = ε and let A1 ∈ N be a point in the left δ-neighborhood of C1, |C1A1| < δ. On the other hand,

the point A1 must be on the line segment A2k−1B2k−1 for some k, the successor point A3 of A1 must be on the line segment

A2k+1B2k+1. Further, as t → ∞, the trajectory starting from the point A1 is close to the order-1 periodic solution C1C2, which

implies that C1C2 is stable from the left side. Similarly, for the arbitrary point B1 in the right δ-neighborhood of the point C1, its

successor point B3 must lie on the line segment C1B1. Similarly, we can know that C1C2 is stable from the right side. Therefore,

the order-1 periodic solution C1C2 is stable. This completes the proof. �

5. Order-1 periodic solution for 0 < β < 1 and p > 0

In this section, we will mainly discuss the existence of order-1 periodic solution for 0 < β < 1 and p > 0. We first consider the

existence of order-1 singular cycle.

Denote the intersection point of the image set N and the separatrixes s2 (or s4) by E. For a certain value of β , it is obvious that

there is a value p∗ = xE − xA such that the order-1 singular cycle exists and consists of the arc , the line segment AE, the arc

and the equilibrium O(see Fig. 11). System (2.5) has two kinds of order-1 singular cycles.

(1) If (1 − β)h > y∗, the point near the equilibrium O moves along the separatrix s1, reaches the point A, jumps to the point E

under the impulsive effect, and then tends to the equilibrium O along the separatrix s2 (see Fig. 11(a)).

(2) If (1 − β∗)h < (1 − β)h < y∗, the point near the equilibrium O moves along the separatrix s1, reaches the point A, jumps

to the point E under the impulsive effect, and then tends to the equilibrium O along with the separatrix s4(see Fig. 11(b)).

Here β∗ is the value of β at which the singular cycle exists and xA = xE for p = 0 (see Theorem 4.1).

Similarly, for a certain value p < p∗, there exists a corresponding value of β such that system (2.5) has an order-1 singular

cycle.

When 0 < β < β∗ and 0 < p < p∗, the trajectories of system (2.5) starting from the region G = G1 + G2 will retain there. The

followings will consider the existence of order-1 periodic solution for 0 < β < β∗, 0 < p < p∗.
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Fig. 12. The existence of two kinds of order-1 periodic solutions.
Theorem 5.1. If h > y∗, (1 − β)h > y∗, a12 > 1, a21 > 1, then system (2.5) has two kinds of order-1 periodic solutions for β < β∗ and

p < p∗ where β∗ and p∗ can be seen in the above.

Proof. Denote the intersection point of the isoclinic line dy
dt

= 0 and the line y = (1 − β)h by D1. The trajectory π+(D1) hits the

impulsive set M at the point D2. Obviously, if (1 − β)h > y∗, let p̄ = xD1
− xD2

,then the arc is an order-1 periodic solution

for p = p.

If p < p̄, without loss of generality, let p = p̄ − �p, 0 < �p < p̄, see Fig. 12(a). The successor point of D1 is D3, obviously,

xD3
< xD1

and the successor function f(D1) < 0. Since p > 0, then we can easily choose a point A1 in the image set N and close

to the point (0, (1 − β)h) sufficiently, the successor point of A1 is A3 and xA3
> xA1

. Further, f(A1) > 0. Therefore, there exists a

point C between A1 and D1 such that f (C) = 0, which implies that the order-1 periodic solution exists. Similar to the proof of

Theorem 4.4, we have that |A1D1| > |A3D3| > · · · > |A2k−1B2k−1| > · · · and {|AkDk|}, k = 1, 2, . . . is a strictly monotone decreasing

sequence, where A2k+1 and D2k+1 are the successor points of A2k−1 and D2k−1, k = 1, 2, . . . , respectively, then we know that the

order-1 periodic solution is unique.

In the case of p < p̄, since �p is arbitrary, then we can know that the trajectory of order-1 periodic solution moves from right

to left with the parameter p decreasing and the order-1 periodic solution is of type I.

If p > p̄, without loss of generality, let p = p̄ + �p < p∗, see Fig. 12(b). Still denote the successor point of D1 by D3. Obviously,

xD3
> xD1

and the successor function f(D1) > 0 for p > p̄. Since p < p∗, then we can choose a point A1 be in the image set N and

close to separatrix s2 sufficiently, the successor point of A1 is A3 and xA3
< xA1

. Further, f(A1) < 0. Therefore, there also exists a

point C between A1 and D1 such that f (C) = 0 which implies that the order-1 periodic solution exists. Similar to the proof of

Theorem 3.2, we know that the order-1 periodic solution is also unique.

With the value of parameter p increasing, the order-1 periodic solution tends to the separatrixes s1 and s2. Since the value of

y first decreases and then increases, then we can know that the order-1 periodic solution is of type II.

Therefore, system (2.5) has two kinds of order-1 periodic solution for (1 − β)h > y∗.This completes the proof. �

Remark 5.2. For the order-1 periodic solution of type II (p > p̄), there exists a corresponding p′(p′ < p̄) such that the trajectory

of periodic solution of type I lies on the trajectory of the periodic solution of type II (see Fig. 13).

Remark 5.3. If (1 − β∗)h < (1 − β)h < y∗, there must exist a value p∗∗ of the parameter p such that all the trajectories will go

into the region R after several impulsive effects. For p < p∗∗, the existence of order-1 periodic solution can be proved by the

similar ideas of the case (1 − β)h > y∗. Here omits it. It should be pointed out that all the order-1 periodic solution are of type I,

and no periodic solution of type II exists.

Remark 5.4. Theorem 5.1 only states that system (2.5) has two kinds of order-1 periodic solutions. In fact, from the proof of

Theorem 5.1, we can know that for the given parameters, the corresponding order-1 periodic solution is unique if it exists.

Theorem 5.5. Suppose that system (2.5) has an order-1 periodic solution (x̃(t), ỹ(t)) starting from the point (x1, (1 − β)h) and hits

the impulsive set M at the point (x2, h) where x1 = x2 + p for p > 0 and 0 < β < 1. The order-1 periodic solution (x̃(t), ỹ(t)) is orbitally

asymptotically stable and has the asymptotic phase properties if

|μ2| =
∣∣∣∣1 − (1 − β)h − a21x1

1 − h − a21(x1 − p)

x1 − p

x1

∣∣∣∣exp

(∫ T

0

( − x̃(t) − bỹ(t))dt

)
< 1. (5.1)
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h

(1 )hβ− 1C

2B

1G
2G

2C

II
1CD

Type I

Type II

Fig. 13. The relations between the order-1 periodic solutions of types I and II.
In particular, the order-1 periodic solution of type I is orbitally asymptotically stable if one of the following conditions holds:

(1) βh ≤ a21p;

(2) βh > a21p, h − y∗ > a21 p.

Proof. Let x̃ = x̃(t), ỹ = ỹ(t). According to Lemma 2.5, we can calculate and obtain that

∂B

∂x
= 0,

∂B

∂y
= −β,

∂φ

∂x
= 0,

∂φ

∂y
= 1,

∂A

∂x
= 0,

∂A

∂y
= 0,

�1 = Q+

Q
= b(1 − β)h(1 − (1 − β)h − a21x1)

bh(1 − h − a21x2)
= (1 − β)(1 − (1 − β)h − a21x1)

1 − h − a21(x1 − p)
,

and

∂P

∂x
(x̃(t), ỹ(t)) + ∂Q

∂y
(x̃(t), ỹ(t)) = 1 − 2x̃ − a12ỹ + b − 2bỹ − a21bx̃

= dx̃

x̃dt
− x̃ + dỹ

ỹdt
− bỹ = dx̃

x̃dt
+ dỹ

ỹdt
− x̃ − bỹ,

then

exp

[∫ T

0

(
dx̃

x̃dt
+ dỹ

ỹdt
− bỹ

)
dt

]
= exp

(∫ x1−p

x1

dx̃

x̃

)
exp

(∫ h

(1−β)h

dỹ

ỹ

)
exp

[∫ T

0

( − x̃ − bỹ)dt

]
= x1 − p

x1

1

1 − β
exp

(∫ T

0

( − x̃ − bỹ)dt

)
.

Further,

μ2 = (1 − β)(1 − (1 − β)h − a21x1)

1 − h − a21(x1 − p)

x1 − p

x1

1

1 − β
exp

(∫ T

0

( − x̃ − bỹ)dt

)
= 1 − (1 − β)h − a21x1

1 − h − a21(x1 − p)

x1 − p

x1

exp

(∫ T

0

( − x̃ − bỹ)dt

)
.

According to Lemma 2.5, the order-1 periodic solution is orbitally asymptotically stable and has the asymptotic phase prop-

erties if (5.1) holds.

Let

g(x1) = 1 − (1 − β)h − a21x1

1 − h − a21(x1 − p)
= 1 − h − a21x1 + βh

1 − h − a21x1 + a21 p
= 1 + βh − a21 p

1 − h − a21x1 + a21 p
.

For the order-1 periodic solution of type I, since dy
dt

|(x1,(1−β)h) = 1 − h − a21x1 > 0, we know that g(x1) ≤ 1 if βh ≤ a21p.

Further, 0 < μ2 < 1 if βh ≤ a21p and the order-1 periodic solution is orbitally asymptotically stable.

If βh > a21p, from
∂g(x1)
∂x1

= a21(βh−a21 p)

(1−h−a21x1 + a21 p)2 > 0, for the periodic solution of type I, since x1 < x∗ and

g(x1) < 1 + βh − a21 p

1 − h − a21x∗ + a21 p
= 1 + βh − a21 p

y∗ − h + a21 p
= 1 − βh − a21 p

h − y∗ − a21 p
.

Then g(x1) < 1 for βh > a21p and h − y∗ > a21 p. Further, 0 < μ2 < 1 and the order-1 periodic solution is orbitally asymptotically

stable. This completes the proof. �
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Fig. 14. The phase portrait of system (2.5) for h = 0.35 < y∗ = 0.4, β = 0.5.
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Fig. 15. The phase portraits of system (2.5) for h = 0.8, β = 0 and p = 0.06 : 0.05 : 0.51, respectively.
6. Numerical simulations and conclusions

To verify the mathematical results obtained above, we take a12 = a21 = 1.5 > 1 and b = 2, then system (2.5) is a bistable

system and has two stable equilibria (1,0) and (0,1), a positive equilibrium (x∗, y∗) = (0.4, 0.4) which is a saddle point.

Theorem 2.6 shows that the solutions of system (2.5) tends to the equilibrium (1,0) after at most finite times impulsive effects.

We take h = 0.35 < y∗ = 0.4, β = 0.5, p = 0, then the phase portrait of the solution starting from the point (0.1, 0.25) can be seen

in Fig. 14(a). Fig. 14(b) is given to clearly see the position of the trajectory in the phase plane. From Fig. 14, we can see that the

trajectory tends to (1,0) after four times impulsive effects. For the case of p �= 0, the similar result can be found and the phase

portrait is omitted here. This implies that the threshold h should be larger than y∗ to reach the aim of control, that is, to maintain

the biomass of two species in a suitable region. Otherwise, the control is not effective.

In the following, we gives the numerical simulations of the case h > y∗. Theorem 3.2 shows that there exists a value p∗
2 of

the parameter p such that system (2.5) has an order-1 periodic solution for β = 0 and p < p∗
2
. In order to verify the existence of

p∗
2
, we take h = 0.8 > y∗ = 0.4, β = 0 and let p = 0.06 : 0.05 : 0.51(that is, the value of p is taken from 0.01 to 0.51 by step size

0.05, respectively), then the phase portraits of the solutions starting from the same initial value (0.2, 0.4) ∈ G2 can be seen in

Fig. 15. From Fig. 15, we can see that system (2.5) has an order-1 periodic solution for p ≤ 0.46, but the solution tends to (1,0) for

p ≥ 0.51, which implies that there must be a critical value p∗
2
(0.46 < p∗

2
< 0.51) such that system (2.5) has an order-1 periodic

solution for p < p∗
2, and the trajectories tend to (1,0) for p > p∗

2. Therefore, for the control strategy of single releasing fish, if we

want to maintain the biomass of two species in the region G1, the amount p of the released fish should be chosen suitably and

not be larger than p∗
2
. Otherwise, it can result in the extinction of the algae species y. Besides, for p < p∗

2
, we can also see that the

periodic orbits tend to the separatrixes s1 and s2 with p increasing. Fig. 15 also shows that the biomass of the algae first decreases

and then increases after impulsive effect, and the periodic solutions are of type II.

Theorem 4.2 shows that the boundary order-1 periodic solution (0, ỹ(t)) of system (2.5) is stable if (1 − β)h ≥ 1
a12

, unstable

if (1 − β)h < 1
a12

. We take h = 0.8 > y∗, p = 0, Fig. 16(a) shows the solution tends to the boundary periodic solution (0, ỹ(t))
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Fig. 16. The phase portraits of system (2.5) for h = 0.8, p = 0.
where β = 0.15, (1 − β)h = 0.68 > 1/a12 ≈ 0.67. Fig. 16(b) shows that there exists a positive order-1 periodic solution for β =
0.7 where (1 − β)h = 0.24 < 1/a12. Both trajectories starting from (0.06,0.4) and (0.2,0.4) tend to the order-1 periodic solution

from the left side and the right side, respectively. Theorem 4.1 implies that there is a value β∗ of the parameter β such that the

solutions of system (2.5) tend to (1,0) for β > β∗. So we take β = 0.84 : 0.05 : 0.99, then Fig. 16(c) shows that system (2.5) has

order-1 periodic solutions for β ≤ 0.94, and tends to (1,0) for β = 0.99. This implies that there must be a value β∗ ∈ (0.94, 0.99)

such that system (2.5) has an order-1 periodic solution for β < β∗ and the trajectory tends to (1,0) after one impulsive effect for

β > β∗.

From Fig. 16, we can see that if h > 1/a12 > y∗, then there are two thresholds β∗ = 1/a12 and β∗ ∈ (0.94, 0.99) such that system

(2.5) has three cases: system (2.5) has a boundary periodic solution for β < β∗, a positive periodic solution for β∗ < β < β∗ and

the solutions tend to (1,0) for β > β∗. This implies that for the single chemical control, if the harvest rate of the algae is smaller

than β∗, then the control is also not effective and the fish still tends to be extinct. When β > β∗, the algae species y tends to

be extinct. Only the harvest rate is lager than β∗ and less than β∗, then the aim of control is reached. Therefore, for the single

chemical control of spraying algaecide, the harvest rate should be chosen carefully. From Theorem 4.4, we know that there exists

a positive order-1 periodic solution for p = 0 and β∗ < β < β∗. Although so, the biomass of species x is smaller, which may be a

part of the reason why the algae always increases after spraying algaecide.

If p > 0 and 0 < β < 1, Fig. 17 gives the phase portraits for h = 0.8, β = 0.15, p = 0.01 : 0.05 : 0.46, respectively, where (1 −
β)h > y∗, and shows that system (2.5) has the positive order-1 periodic solutions, different values of p correspond to different

positions of the trajectories for p ≤ 0.41. But the solutions tend to (1,0) if p ≥ 0.46. Thus, there is a critical value p∗ ∈ (0.41, 0.46)

such that the solutions will tend to (1, 0) for p > p∗. When p < p∗, the order-1 periodic solution exists. The parameters in Fig. 17

are the same as that in Fig. 16(a) except p. Fig. 16(a) shows that the solution tends to the boundary solution (0, ỹ(t)) and the

species x tends to be extinct for β < β∗. But in this case, if the releasing measure is also taken, then the positive periodic solution

exists. This implies that the combination of two control measures is more effective than the single chemical control and the

critical amount of the released fish is also decreased.
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Fig. 18. The phase portraits of system (2.5) for β = 0.15 and p = 0.01 : 0.01 : 0.11, p = 0.2 and β = 0.01 : 0.1 : 0.71, respectively.
Fig. 18(a) gives the numerical simulations for h = 0.8, β = 0.6 and p = 0.01 : 0.02 : 0.25, respectively, where (1 − β)h < y∗.

Fig. 18(b) shows the numerical simulations for h = 0.8, p = 0.2 and β = 0.01 : 0.1 : 0.71, respectively. From Figs. 17 and 18, we

know that for a given parameter β (or p), there exists a corresponding value p∗(or β∗) such that system (2.5) has the order-1

periodic solution for p < p∗(or β < β∗), the solutions tend to (1,0) for p > p∗(or β > β∗).

From those mathematical and numerical results, we know that, for a system with bistable property, the control threshold h

should be given suitably. In addition, different control parameters can result in different results. For the control parameters p

and β , there must be the corresponding thresholds p∗ and β∗ such that system (2.5) has order-1 periodic solution if p < p∗ and

β < β∗, the solutions tend to (1,0) for p > p∗ and β > β∗. Since system (2.5) does not have the explicit expression of solution,

then we only give the existence of the thresholds p∗ and β∗, and cannot give the explicit expressions of them. Since the curves,

including s1, s4 and the equilibrium O, is monotone, then we can know that for the parameter β∗ < β < β∗, if β increases, then

the threshold p∗ decreases correspondingly.

Those mathematical results show that it is difficult for people to control the algae bloom in an eutrophic water body because

there are the critical values for the control parameters h, p and β . Therefore, for the bistable system, the control parameters should

be chosen carefully. If the suitable parameters are given, then the positive periodic solution exists and two species coexist.

If we pay our attentions to the algae and its tendency of evolution after the impulsive control is performed, then we can see

that, for the single spraying algaecide (p = 0), the amount of the algae is always increasing in the period of control. For the single

releasing fish (β = 0), the amount of the algae first decreases and then increases. The integrated control combining spraying

algaecide and releasing fish has two cases above. For both the single releasing fish and the integrated control, the amount of

the algae decreases after the control measures are performed. Since the chemical control can quickly decrease the amount of

the algae, then we think that the integrated control should be the preferred strategy (if the algaecide has less harmful to other

aquatic organisms).
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From the above discussions, we know that the critical values of the combination control are less than the single control

measures. Whether there is the optimal harvest rate β and the amount p of the released fish such that the control effect is best

and the cost of control is lowest. In addition, how to give the objective function? There are some troubles for us to discuss the

above optimal problems which will be our future work.
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