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Abstract In this paper, a predator–prey model with
both constant rate harvesting and state dependent im-
pulsive harvesting is analyzed. By using differential
equation geometry theory and the method of successor
functions, the existence, uniqueness and stability of
the order one periodic solution have been studied. Suf-
ficient conditions which guarantee the nonexistence of
order k (k ≥ 2) periodic solution are given. We also
present that the system exhibits the phenomenon of
homoclinic bifurcation under some parametric condi-
tions. Finally, some numerical simulations and biolog-
ical explanations are given.

Keywords Predator–prey system · Order k periodic
solution · Successor function · Orbitally
asymptotically stable · Homoclinic bifurcation

1 Introduction

Optimal management of renewable resources has be-
come an increasingly interesting topic in the recent
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decades. The exploitation of biological resources and
the harvest of population species are commonly prac-
ticed in fishery, forestry, and wildlife management [1].
In the recent years, the harvesting effects on the dy-
namics of predator–prey systems have attracted lots of
attentions and considerable work has been done. Dif-
ferent harvesting methods are applied in various sit-
uations. If the population species are harvested fre-
quently and regularly, then it can be approximately
analyzed by a constant rate harvesting [1–8]. On the
other hand, if the harvesting is infrequent and periodic,
we can use a periodic impulsive harvesting to model
it [9–17]. For these two types of harvesting, i.e. con-
stant rate or impulsive fashion, the population species
we concerned (the predator or the prey) is harvested
without knowledge of the amount of both the predator
and the prey. A highly possible risk is excessive ex-
ploitation, even resource exhaustion. To improve the
harvesting styles, we propose a novel idea that a re-
liable real time monitoring system can be introduced
to estimate the number of the species. If the amount
of the species satisfies specific requirements, the be-
havior of harvesting can be carried out, otherwise, any
form of harvesting is inhibited. Such monitoring sys-
tems exist in many fields (interested readers can re-
fer to [18–20]) and can help us to avoid excessive ex-
ploitation when we plan a long term management of a
biological resource.

Brauer and Soudack [2] discussed a predator–prey
system under constant rate predator harvesting and
gave the region of asymptotic stability in a variety of
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scenarios. Besides, they specially studied the follow-
ing system:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

Å
1 − x

K

ã
− xy

a + x
,

dy

dt
= y

Å
μx

a + x
− d

ã
− H,

(1)

where x and y represent the population densities of
prey and predator, respectively; H > 0 is the constant
rate at which the predators are harvested; K > 0 and
r > 0, respectively, represent the carrying capacity and
the intrinsic birth rate of the prey; μ > 0 is the con-
version rate and d > 0 is the death rate of the preda-
tor. The function x

a+x
denotes the predator response of

Holling type II.
Brauer and Soudack [2] studied the global behavior

of system (1) for some parameter values by numerical
simulations. Xiao and Ruan in [1] also studied the sys-
tem (1) and they mainly did a bifurcation analysis.

For predator–prey system (1), in addition to the
constant rate harvesting of the predator, we can also
introduce a state dependent impulsive harvesting. We
assume the amount of the prey can be estimated by a
monitoring system, and the monitoring data can help
us decide if we harvest the predator or not. Suppose
the predator which corresponds to the variable y has
high commercial value, and its production is increased
mainly through replenishing the quantity of its prey
which corresponds to the variable x. The harvesting
of the predator consists of two parts: one is a constant
rate harvesting which models the frequent case (usu-
ally few in amount), and the other is an impulsive har-
vesting which models the infrequent case. To model
this phenomenon, we can propose the following state
dependent impulsive differential equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= rx

Å
1 − x

K

ã
− xy

a + x
,

dy

dt
= y

Å
μx

a + x
− d

ã
− H,

⎫
⎪⎪⎬

⎪⎪⎭

x > h,

x
(
t+

) = x(t) + τ,

y
(
t+

) = (1 − β)y(t),

}

x = h,

(2)

where h > 0 is a threshold. When the monitoring sys-
tem shows the amount of the prey is larger than h,
which means the food is abundant and the predators
are growing well, the development of the system coin-
cides with the economic interest. When the amount of

the prey drops to the threshold h, which means the nu-
trition of the predator will be deficient, we harvest the
predator at rate β ∈ (0,1) and replenish a fixed amount
of prey at the same time. We denote the replenishment
amount as τ .

In this paper, we mainly discuss the dynamics prop-
erties of the system (2). The paper is organized as fol-
lows. In Sect. 2, some notation and definitions of the
geometric theory of semi-continuous dynamical sys-
tems are provided. In Sect. 3, we mainly discuss the
existence, uniqueness and orbitally stability of peri-
odic solutions under some conditions. The paper ends
with a brief discussion and some numerical simula-
tions.

2 Preliminaries

In this section, we give some notation and definitions
of the geometric theory of semi-continuous dynamical
systems which will be useful for the following discus-
sions.

Definition 1 [21] Consider the state-dependent im-
pulsive differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y),

⎫
⎪⎪⎬

⎪⎪⎭

(x, y) /∈ M{x, y},

Δx = α(x, y),

Δy = β(x, y),

}

(x, y) ∈ M{x, y}.

(3)

We define the dynamic system consisting of the solu-
tion mappings of the system (3) a semi-continuous dy-
namical system, denoted as (Ω,f,ϕ,M). We require
that the initial point P of the system (3) should not
be in the set M{x, y}, that is, P ∈ Ω = R2+ \ M{x, y},
and the function ϕ is a continuous mapping that satis-
fies ϕ(M) = N . Here ϕ is called the impulse mapping,
where M{x, y} and N{x, y} represent the straight lines
or curves in the plane R2+, M{x, y} is called the im-
pulse set, and N{x, y} is called the phase set.

Remark 1 For the system (2), M = {(x, y) | x = h,

y ≥ 0}, N = {(x, y) | x = h + τ, y ≥ 0}, and for any
(x, y) ∈ M , we have ϕ(x, y) = (h + τ, (1 − β)y).
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Fig. 1 (a) The solution mapping of the system (3). (b) Order one periodic solution. (c) Order two periodic solution

Definition 2 [21] For the semi-continuous dynamical
system defined by the state-dependent impulsive dif-
ferential equations (3), the solution mapping f (P, t) :
Ω → Ω consists of two parts:

(1) Let π(P, t) denote the Poincaré mapping with the
initial point P of the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= P̄ (x, y),

dy

dt
= Q̄(x, y).

If f (P, t)∩M{x, y} = ∅, then f (P, t) = π(P, t).
(2) If there exists a time point T1 such that f (P,T1) =

H ∈ M{x, y}, ϕ(H) = ϕ(f (P,T1)) = P1 ∈
N{x, y} and f (P1, t) ∩ M{x, y} = ∅, then
f (P, t) = π(P,T1) + f (P1, t) (see Fig. 1(a)).

Remark 2 For (2) in Definition 2, if f (P1, t) ∩
M{x, y} �= ∅, and there exists a time point T2 such that
f (P1, T2) = H1 ∈ M{x, y}, ϕ(H1) = ϕ(f (P1, T2)) =
P2 ∈ N{x, y} and f (P2, t) ∩ M{x, y} = ∅, then
f (P, t) = π(P,T1) + f (P1, t) = π(P,T1) +
π(P1, T2) + f (P2, t).

If f (P2, t) ∩ M{x, y} �= ∅, . . . , f (Pk−1, t) ∩
M{x, y} �= ∅ and f (Pk, t)∩M{x, y} = ∅, then we can
repeat the above steps and have the following form:

f (P, t) =
k∑

i=1

π(Pi−1, Ti) + f (Pk, t), P0 = P.

Definition 3 [21] If there exist a point P ∈ N{x, y}
and a time point T1 such that f (P,T1) = H ∈ M{x, y}
and ϕ(H) = ϕ(f (P,T1)) = P ∈ N{x, y}, then f (P, t)

is called an order one periodic solution of the sys-
tem (3) whose period is T1 (see Fig. 1(b)). The orbit
of the order one periodic solution is called an order
one cycle. If there exists a singularity in the order one
cycle, we call it an order one singular cycle. If the sin-
gularity is a saddle, we call it an order one homoclinic
cycle.

Definition 4 [21] If there exist a point P ∈ N{x, y}
and a time point T1 such that f (P,T1) = H ∈ M{x, y}
and ϕ(H) = P1 ∈ N{x, y}, and there also exists a
time point T2 such that f (P1, T2) = H1 ∈ M{x, y} and
ϕ(H1) = P ∈ N{x, y}, then f (P, t) is called an order
two periodic solution of the system (3) whose period
is T1 + T2 (see Fig. 1(c)). Analogously, we can define
the order k periodic solution of the system (3).

Definition 5 Suppose Γ = f (P, t) is an order one pe-
riodic solution of the system (3). If for any ε > 0, there
must exist δ > 0 and t0 ≥ 0, such that for any point
P1 ∈ U(P, δ) ∩ N{x, y}, we have ρ(f (P1, t),Γ ) < ε

for t > t0, then we call the order one periodic solution
Γ is orbitally asymptotically stable.

Definition 6 [21] Suppose the impulse set M and
phase set N of the system (3) are straight lines and
a coordinate system can be defined in the phase set N .
Let point A ∈ N and its coordinate is a. Assume that
the trajectory from the point A intersects the impulse
set M at a point A′, and, after impulsive effect, the
point A′ is mapped to the point A1 ∈ N with the coor-
dinate a1, then we call point A1 is the order one suc-
cessor point of point A, and the order one successor
function of point A is F1(A) = a1 − a.
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Remark 3 For system (2), we define the coordinate of
point H ∈ N = {(x, y) | x = h + τ, y ≥ 0} as its coor-
dinate in y-axis.

Remark 4 For Definition 6, if the trajectory from the
point A1 intersects the impulse set M again at a
point A′

1, and, after impulsive effect, the point A′
1 is

mapped to the point A2 ∈ N with the coordinate a2,
then the point A2 is obviously the order one succes-
sor point of point A1, we also call point A2 is the or-
der two successor point of point A, and the order two
successor function of point A is F2(A) = a2 − a. If
the process can be repeated over and over again, then
we can define the order k successor point of point A

(which we denote as Ak and its coordinate is ak) and
the order k successor function of A which we denote
as Fk(A) = ak − a.

Lemma 1 [21] Successor function Fk(A) is continu-
ous.

Lemma 2 For the systems (2), if there exist two points
A ∈ N,B ∈ N such that Fk(A)Fk(B) < 0, then there
must exist a point C ∈ N which is between the points A

and B such that Fk(C) = 0, thus the system must have
an order k periodic solution which passes through the
point C.

Proof By Lemma 1, we can easily see that there must
exist a point C ∈ N which is between the points A and
B such that Fk(C) = 0. According to Definition 4, we
know Γ = f (C, t) is an order k periodic solution. That
completes the proof. �

3 Existence, uniqueness and stability of periodic
solutions

In this section, we mainly discuss the existence,
uniqueness and stability of the order k periodic so-
lution of the system (2) by using differential equation
geometry theory and the method of successor func-
tions. Before those discussions, we should consider
the qualitative characteristics of the system (1), and
we mainly discuss the conditions under which the sys-
tem (1) has no periodic solution.

3.1 Qualitative analysis of the system (1)

Firstly, we consider the equilibria of system (1) in R2+.
By setting rx(1 − x

K
) − xy

a+x
= 0 and y(

μx
a+x

− d) −
H = 0, we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

y = r

Å
1 − x

K

ã
(a + x),

y = H(a + x)

(μ − d)x − ad
.

Then we have

f (x) = r

K
(μ − d)x2 − r

ï
(μ − d) + ad

K

ò
x

+ rad + H = 0.

Let

Δ = r2
ï
(μ − d) + ad

K

ò2

− 4
r

K
(μ − d)(rad + H),

then we find that if the conditions

(H1): μ > d,
ad

(μ − d)
< K, and

ï
(μ − d) + ad

K

ò2

>
4(μ − d)(rad + H)

Kr

hold, then the system (1) has two positive equilibria.
When the two positive equilibria exist, we denote

them as E1(x1, y1),E2(x2, y2), where

x1 = K
r[(μ − d) + ad

K
] − √

Δ

2r(μ − d)

= K

2
+ ad

2(μ − d)
− K

√
Δ

2r(μ − d)
,

y1 = r

Å
1 − x1

K

ã
(a + x1),

x2 = K
r[(μ − d) + ad

K
] + √

Δ

2r(μ − d)

= K

2
+ ad

2(μ − d)
+ K

√
Δ

2r(μ − d)
,

y2 = r

Å
1 − x2

K

ã
(a + x2).

Now, we begin the analysis of the stability of the
equilibria of system (1).
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The Jacobian matrix at Ei, i = 1,2 is given by

J (Ei) =
(

r − 2rxi

K
− ayi

(a+xi )
2 − xi

a+xi
aμyi

(a+xi )
2

μxi

a+xi
− d

)

.

Through calculations, we get

Det
(
J (Ei)

) = −rd + 2rdxi

K
+ rμxi

a + xi

+ adyi

(a + xi)2

− 2μrx2
i

K(a + xi)

=
2r
K

(μ − d)xi[K
2 + ad

2(μ−d)
− xi]

(a + xi)
,

Tr
(
J (Ei)

) = r − d − 2rxi

K
− ayi

(a + xi)2 + μxi

a + xi

=
2r
K

xi[K−a
2 + Kμ

2r
− xi]

(a + xi)
− d.

Obviously, Det(J (E1)) > 0 and Det(J (E2)) < 0. That
is to say E2(x2, y2) is a saddle, and E1(x1, y1) is an
elementary and not saddle-type equilibrium.

Besides, if the condition

(H2): x1 = K

2
+ ad

2(μ − d)
− K

√
Δ

2r(μ − d)

>
K − a

2
+ Kμ

2r

holds, then Tr(J (E1)) < 0, that is to say, E1(x1, y1)

is a node or focus which is locally asymptotically sta-
ble.

In the following, we begin to discuss the conditions
that the system (1) has no periodic solution in the in-
terior of the first quadrant.

For the sake of simplicity, we put in dimension-
less form of the system (1) by using dimensionless
time t = (a + x)ω, and this leads to the following sys-
tem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dω
= x

ï
ar + r

Å
1 − a

K

ã
x − r

K
x2 − y

ò

= P(x, y),

dy

dω
= (μ − d)y

ï
x − ad

(μ − d)
− H(a + x)

(μ − d)y

ò

= Q(x,y).

(4)

By the new approach to prove the nonexistence of
limit cycle in [22], we let

M(x,y) = θx−2y−s , N(x, y) = 0,

B(x, y) = x−1y−1−s ,

where θ and s is to be determined, then we can get

L (M,N,P,Q)

= ∂(NQ)

∂x
− ∂(MP)

∂y
+ ∂(BP )

∂x
+ ∂(BQ)

∂y

= x−1y−1−s

ß
− r

K
(θs + 2)x2

+
ï
r

Å
1 − a

K

ã
(θs + 1) − s(μ − d)

ò
x

+ θars + sad + θ(1 − s)y

+ H(s + 1)(a + x)y−1
™

.

Let s = −1, then we have

L (M,N,P,Q)

= x−1
ß

r

K
(θ − 2)x2

+
ï
r

Å
1 − a

K

ã
(1 − θ) + (μ − d)

ò
x

− a(θr + d)

™
+ 2θx−1y.

If there exists θ = θ0 < 0 such that

g(x, θ0) = r

K
(θ0 − 2)x2

+
ï
r

Å
1 − a

K

ã
(1 − θ0) + (μ − d)

ò
x

− a(θ0r + d) < 0, 0 < x < ∞,

then we know L (M,N,P,Q) < 0 for (x, y) ∈ R2+
when M(x,y) = θ0x

−2y, N(x,y) = 0, B(x, y) =
x−1, and we get the system (4) has no periodic so-
lution in R2+ by the result appeared in [22].

We now search for the conditions that guarantee
there exists θ0 < 0 such that g(x, θ0) < 0, 0 < x < ∞.
We denote the discriminant of quadratic equation
g(x) = 0 as Δ1(θ) which is seen as a function in θ ,
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then

Δ1(θ) =
ï
r

Å
1 − a

K

ã
(1 − θ) + (μ − d)

ò2

+ 4ra

K
(θ − 2)(θr + d)

= r2
ïÅ

1 − a

K

ã2

+ 4a

K

ò
θ2 − 2

ï
r2
Å

1 − a

K

ã2

+ r(μ − d)

Å
1 − a

K

ã
− 2ar(d − 2r)

K

ò
θ

+
ï
r

Å
1 − a

K

ã
+ (μ − d)

ò2

− 8ard

K
.

Obviously, we just need to find a θ0 < 0 such that
Δ1(θ0) < 0. It is easy to know that if the condition

(H3):
ï
r

Å
1 − a

K

ã
+ (μ − d)

ò2

<
8ard

K

hold, then we have Δ1(0) < 0 and there must exist
θ0 < 0 such that Δ1(θ0) < 0 because of the continu-
ity of Δ1(θ).

Because the transformation between the system (1)
and the system (4) is a homomorphism, we can get the
following result according to the above discussion:

Theorem 1 If the conditions (H1), (H2), (H3) are sat-
isfied, then the system (1) has two equilibria: a saddle
E2(x2, y2) and a locally asymptotically stable node or
focus E1(x1, y1), and system (1) has no closed orbits
in the interior of the first quadrant.

3.2 Existence, uniqueness and stability of periodic
solutions of the system (2)

According to the impulsive differential equations (2),
the threshold h and the recruitment τ of the prey when
people harvest the predator should satisfy the condi-
tion 0 < h < h + τ < K by ecological significance.
For this consideration, we have the following results.

Theorem 2 If the conditions (H1), (H2), (H3) are sat-
isfied, and x1 < h < h + τ < x2, then there must exist
fixed values β0 and β∗ which satisfy 0 < β0 < β∗ < 1
such that for every β ∈ (β0, β∗), the system (2) has
a unique order one periodic solution in region Ω1,
where region Ω1 is the region enclosed by the x-axis,
the impulse set x = h and the unstable flow of the sad-
dle E2(x2, y2).

Proof According to Theorem 1, the system (1) has
two equilibria: a saddle E2(x2, y2) and a locally
asymptotically stable node or focus E1(x1, y1), and
system (1) has no closed orbits in the interior of the
first quadrant. For convenience, we denote the x-axis
intersects impulse set x = h and phase set x = h+ τ at
point A′ and point B ′, respectively, the unstable flow
of E2(x2, y2) intersects impulse set x = h and phase
set x = h + τ at point A and point O , respectively, the
vertical isocline dx

dt
= 0 intersects impulse set x = h

and phase set x = h + τ at point C and point D, re-
spectively, and the stable flow of E2(x2, y2) intersects
impulse set x = h and phase set x = h + τ at point A1

and point B , respectively, then the region Ω1 is the in-

terior of the closed curve �̋E0E2OA∪ACA′ ∪A′B ′E0,
where E0 denotes the intersection of the unstable flow
of E2 and x-axis (see Fig. 2).

Fig. 2 The existence of
order one periodic solution
of the system (2)
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Periodic solutions and homoclinic bifurcation of a predator–prey system with two types of harvesting 821

By the impulsive conditions of the system (2), there
must exist a fixed value β0 ∈ (0,1), when β = β0,
point A is mapped to the point D after impulsive ef-
fect, that is to say, (1 − β0)yA = yD ; also there must
exist a fixed value β∗ ∈ (β0,1), when β = β∗, point A

is mapped to the point B after impulsive effect, that is
to say, (1 − β∗)yA = yB . In this paper, we denote yH

as the coordinate of point H in y-axis.
When β ∈ (β0, β∗), after impulsive effect, the point

A is mapped to a point B1 which is also the order
one successor point of B , then we have (1 − β∗)yA =
yB < yB1 = (1 − β)yA < (1 − β0)yA = yD , that is to
say, point B1 is between the point B and point D. The
trajectory of the system (2) from point B1 must inter-
sect the impulse set x = h again at a point B ′

1, and the
point B ′

1 is mapped to a point B2 after impulsive ef-
fect. Since distinct trajectories do not intersect, we can
easily have yC < yB ′

1
< yA and yB2 = (1 − β)yB ′

1
<

(1 − β)yA = yB1 (see Fig. 2). Obviously, point B2 is
the order two successor point of point B and also the
order one successor point of point B1, then we have
the following results of the order one successor func-
tion:

F1(B) = yB1 − yB > 0, F1(B1) = yB2 − yB1 < 0.

By Lemma 2, we know that in the phase set x = h + τ

there must exist a point M which is between the points
B and B1 such that F1(M) = 0, then we know the
system (2) has an order one periodic solution which
passes through the point M .

In the following, we prove the uniqueness of the
order one periodic solution. Arbitrarily choose two
points A1 and A2 which are in the phase set x = h+τ ,
where yB ≤ yA1 < yA2 ≤ yD . Then the trajectories
of the system (2) from points A1 and A2 must inter-
sect the impulse set x = h at some points A′

1 and A′
2,

respectively, and satisfy yC ≤ yA′
2

< yA′
1

≤ yA. Af-
ter impulsive effect, the points A′

1 and A′
2 must be

mapped to two points in the phase set x = h + τ

which we denote as A′′
1 and A′′

2, respectively, and
yA′′

1
= (1 − β)yA′

1
and yA′′

2
= (1 − β)yA′

2
(see Fig. 3).

Obviously, the point A′′
i is the order one successor

point of Ai , i = 1,2. Then we have the order one suc-
cessor functions must satisfy

F1(A2) − F1(A1) = (yA′′
2
− yA2) − (yA′′

1
− yA1)

= (yA′′
2
− yA′′

1
) + (yA1 − yA2) < 0,

Fig. 3 The monotonicity of the successor function F1 in the
segment BD

which means the order one successor function F1

is monotonically decreasing in the segment BD,
thus there exists only one point M ∈ BD such that
F1(M) = 0.

For any point H ∈ DO , the trajectory of the sys-
tem (2) from point H must intersect the impulse set
x = h at a point H ′, and after impulsive effect, the
point H ′ is mapped to a point H1. Obviously, the point
H1 is the order one successor point of H . Since dis-
tinct trajectories do not intersect, it is easy to know
yC < yH ′ < yA and yH1 = (1 − β)yH ′ < (1 − β)yA =
yB1 < yH , then we have F1(H) < 0, which means the
system (2) has no order one periodic solution passing
through the point H where H ∈ DO . Besides, for any
point H ∈ B ′B , the trajectory of the system (2) from
point H must ultimately pass through the x-axis and
doesn’t come across any impulsive effect, that is to say,
the system (2) has no order one periodic solution pass-
ing through the point H where H ∈ B ′B .

To sum up, the system (2) has a unique order one
periodic solution in the region Ω1. That completes the
proof. �

Theorem 3 Under the conditions of Theorem 2,
if β ∈ (β0, β∗) and (1 − β)r(1 − h

K
)(a + h) ≥

H(a+h+τ)
(μ−d)(h+τ)−ad

, then the order one periodic solution of
the system (2) is orbitally asymptotically stable, where
β0 and β∗ are defined in Theorem 2.

Proof For sake of convenience, we denote the hori-
zontal isocline dy

dt
= 0 intersects the phase set x =

h + τ at point F , then yF = H(a+h+τ)
(μ−d)(h+τ)−ad

. It is

easy to know the isocline dy
dt

= 0 is above the sta-
ble flow of E2(x2, y2), then we can get yF > yB
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(see Fig. 2). Besides, by yC = r(1 − h
K

)(a + h) and

(1 − β)r(1 − h
K

)(a + h) ≥ H(a+h+τ)
(μ−d)(h+τ)−ad

, we know
(1 − β)yC ≥ yF > yB . Obviously, for every point
H ∈ CA, we have (1−β)yH ≥ (1−β)yC ≥ yF > yB .

According to Theorem 2, the system (2) has a
unique order one periodic solution that passes through
the point M which is in the phase set x = h + τ ,
and yB < yM < yB1 . The trajectory of the system (2)
from point B1 must intersect the impulse set x = h

again at a point B ′
1, and after impulsive effect, the

point B ′
1 is mapped to a point B2 which is in the

phase set x = h + τ . Because distinct trajectories do
not intersect, we can easily get yC < yB ′

1
< yM ′ and

yB < yB2 < yM , where M ′ is the impulse point of the
order one periodic solution. Besides, the trajectory of
the system (2) from point B2 must intersect the im-
pulse set x = h again at a point B ′

2, and after impulsive
effect, the point B ′

2 is mapped to a point B3 which is
in the phase set x = h+ τ , where yM ′ < yB ′

2
< yA and

yM < yB3 < yB1 .
Repeat the above steps, the trajectory from point B

will come across impulsive effect infinitely times. De-
note the phase point corresponding to the ith impul-
sive effect, which is also the order i successor point of
point B as Bi , i = 1,2, . . . . Let B0 = B , then we have

yB0 < yB2 < yB4 < · · · < yB2k
< yB2(k+1)

< · · · < yM,

and

yB1 > yB3 > yB5 > · · · > yB2k+1 > yB2(k+1)+1

> · · · > yM.

Thus {yB2k
}, k = 0,1,2, . . . , is a monotonically in-

creasing sequence, and {yB2k+1}, k = 0,1,2, . . . , is a
monotonically decreasing sequence (see Fig. 4), and
furthermore,

yB2k
→ yM, as k → ∞; and

yB2k+1 → yM, as k → ∞.

Choose an arbitrary point Q0 ∈ BB1 different from
the point M , Without loss of generality, we assume
that yB < yQ0 < yM (otherwise, yM < yQ0 < yB1 , the
discussions are similar). There must exist an integer
n0 such that yB2n0

< yQ0 < yB2(n0+1)
. The trajectory

from point Q0 will also undergo impulsive effect in-
finitely times. We denote the phase point correspond-
ing to the kth impulsive effect as Qk , k = 1,2, . . . ,

Fig. 4 The orbitally asymptotically stability of the order one
periodic solution of the system (2)

then for any l, we have yB2(n0+l)
< yQ2l

< yB2(n0+l+1)

and yB2(n0+l+1)+1 < yQ2l+1 < yB2(n0+l)+1 , so {yQ2l
},

l = 0,1,2, . . . , is also monotonically increasing, and
{yQ2l+1}, l = 0,1,2, . . . , is also monotonically de-
creasing, and

yQ2l
→ yM, as k → ∞; and

yQ2l+1 → yM, as k → ∞.

Therefore, in either case, the successor points of the
phase points corresponding to the successive impul-
sive effect are attracted to point M , and thus the or-
der one periodic solution of the system (2) is orbitally
asymptotically stable. The proof is completed. �

Theorem 4 Under the conditions of Theorem 3, the
system (2) has no order k periodic solution in re-
gion Ω1, where k ≥ 2.

Proof For any point S ∈ B1O , yB1 < yS < yO , the tra-
jectory from point S will undergo impulsive effect in-
finitely times, and denote the impulse point and phase
point corresponding to the kth impulsive effect as S′

k

and Sk , respectively, where k = 1,2, . . . . It is easy to
know yC < yS′

k
< yA for k = 1,2, . . . , so we have

ySk
= (1−β)yS′

k
< (1−β)yA = yB1 < yS , then the or-

der k successor function Fk(S) = ySk
− yS �= 0, which

means there does not exist an order k periodic solution
passing through point S, where k = 1,2, . . . .
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For any point S ∈ BM,yB < yS < yM , there
must exist an integer n0 such that yB2n0

< yS <

yB2(n0+1)
. We denote the order k successor point of

point S as point Sk , where k = 1,2, . . . . According
to the proof of the Theorem 3, we have yB2(n0+l)

<

yS2l
< yB2(n0+l+1)

< yM and yM < yB2(n0+l+1)+1 <

yS2l+1 < yB2(n0+l)+1 , so {yS2l
}, l = 0,1,2, . . . , is a

monotonically increasing sequence where S0 = S, and
{yS2l+1}, l = 0,1,2, . . . , is a monotonically decreasing
sequence, and

yS2l
→ yM, as k → ∞; and

yS2l+1 → yM, as k → ∞.

When k = 2l, we have ySk
> yS0 = yS and the order

k successor function Fk(S) = ySk
− yS > 0; when k =

2l + 1, we have ySk
> yM > yS0 = yS and the order

k successor function Fk(S) = ySk
− yS > 0. That is to

say there does not exist an order k periodic solution
passing through point S, where k = 1,2, . . . .

Analogously, for any point S ∈ MB1, yM <

yS < yB1 , we can prove there does not exist an order k

periodic solution through point S, where k = 1,2, . . . .
For any point S ∈ B ′B , the trajectory of the sys-

tem (2) from point S must ultimately pass through the
x-axis and doesn’t go through any impulsive effect.

From the above discussion, we know the system (2)
has no order k periodic solution in region Ω1, where
k ≥ 2. That completes the proof. �

Theorem 5 Under the conditions of Theorem 2, if
β = β∗, then the system (2) has an order one homo-
clinic cycle which is the unique order one circle in
region Ω1; if β ∈ (β∗,1), then the system (2) has no
order one periodic solution in region Ω1.

Proof When β = β∗, we have (1 − β)yA = yB1 = yB .

It is easy to know that the curve �̧BE2OA ∪ AB is an
order one circle which has the saddle E2(x2, y2) in it.
According to Theorem (2), we know it is the unique
order one periodic solution of the system (2) in the
region Ω1, that is to say, the system (2) has an order
one homoclinic cycle which is the unique order one
circle in region Ω1.

When β ∈ (β∗,1), we have 0 < (1 − β)yA =
yB1 < yB , the trajectory of the system (2) from point
B1 passes through the x-axis and doesn’t go through
any impulsive effect. Beside, the trajectory of the sys-
tem (2) from point H ∈ BO must pass through the

x-axis after undergoing once impulsive effect and the
trajectory of the system (2) from point H ∈ B ′B must
pass through the x-axis without undergoing any im-
pulsive effect. So we get the result that the system (2)
has no order one periodic solution in region Ω1. That
completes the proof. �

4 Numerical simulations and discussions

In this paper, we build a predator–prey model with
both constant rate harvesting and state dependent im-
pulsive harvesting. The constant term models the hu-
man behavior of the frequent predator harvesting, and
the impulsive term models the human behavior of
infrequent predator harvesting. Combination of the
above two harvesting methods is commonly applied
in practice, so our model is more realistic and can pro-
vide reliable tactic basis for the practical species man-
agement. In system (2), we assume the predator has
high commercial value, besides a constant rate har-
vesting, we harvest the predator in pulses on the ba-
sis of the amount of the prey. Adopting two harvest-
ing methods allows us to exploit the predator resources
more fully without resource exhaustion.

Under the parametric conditions listing in the Theo-
rem 1, we prove that the system (1) has two equilibria:
a saddle E2(x2, y2) and a locally asymptotically stable
node or focus E1(x1, y1), and system (1) has no closed
orbits in the interior of the first quadrant. Every solu-
tion whose initial value is in the region bounded by the
two stable flow of E2(x2, y2) tends to the equilibrium
E1(x1, y1) as t → ∞ (see Fig. 5). But other solutions
will pass through the x-axis after limited time, which
means the predator ultimately die out (see Fig. 6). This
indicates that if we just carry out a constant rate har-
vesting and don’t harvest the predator in pulses, we
should control the amount of the predator and the prey
within a specific scale otherwise the predator will die
out finally.

When we consider an impulsive harvesting of the
predator and add impulsive conditions to the sys-
tem (1), we prove that the system (2) may exist an or-
der one periodic solution, and the existence is mainly
dependent on the level of impulsive harvesting β . Un-
der the parametric conditions listing in Theorem 2,
we prove that there must exist fixed values β0 and β∗
such that the system (2) exists a unique order one pe-
riodic solution in the region Ω1 when the harvesting
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Fig. 5 The time series and the portrait phase of the system (1) when r = 2, K = 40, a = 30, μ = 0.8, D = 0.3, H = 2 and
(x(0), y(0)) = (35,50)

Fig. 6 The time series and the portrait phase of the system (1) when r = 2, K = 40, a = 30, μ = 0.8, D = 0.3, H = 2 and
(x(0), y(0)) = (35,15)

rate is bounded below by β0 and above by β∗, respec-
tively. Under the parametric conditions of Theorem 3,
we prove that the unique order one periodic solution
is orbitally asymptotically stable. Within the allowed
range, as the β increases, the period of the order one
periodic solution becomes longer, and thus the ampli-
tude of the order one periodic solution becomes larger
(see Fig. 7). Besides, we also prove that the system (2)
doesn’t have order k (k = 2,3, . . . ) periodic solutions
in Theorem 4, then the order one periodic solution is
the unique periodic solution. These results illustrate
that if we can satisfy the parametric conditions in The-
orem 3, we can increase the impulsive harvest yield
as high as possible without worrying about resource
exhaustion.

Like a lot of other predator–prey systems [23, 24],
the system (2) also exhibits bifurcation phenomenon.
According to the conclusions of Theorems 2, 3 and 5,

we can choose the parameter β as a bifurcation param-
eter such that the impulsive differential equations (2)
exhibits the phenomenon of homoclinic bifurcation.
Similar to many ordinary differential equation sys-
tems, under the parametric conditions of Theorem 2,
there exists a bifurcation point β = β∗ for the sys-
tem (2). When β = β∗, the system (2) has an order
one homoclinic cycle which is the unique order one
circle in region Ω1. When β is gradually changed from
β = β∗ to β0 < β < β∗, the order one homoclinic cy-
cle is broken and a new order one periodic solution is
generated at the same time. We also give the condi-
tions that guarantee the unique order one periodic so-
lution is orbitally asymptotically stable in Theorem 3.
The order one periodic solution must change gradu-
ally from orbitally asymptotically stable to unstable as
β gradually increase from β0 to β∗. Besides, when β

is gradually changed from β = β∗ to 1 > β > β∗, the
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Fig. 7 The time series and the portrait phase of the system (2) when r = 2, K = 40, a = 30, μ = 0.8, D = 0.3, H = 2, h = 23, τ = 12
and (x(0), y(0)) = (35,20)

Fig. 8 Time series and portrait phase of the system (2) when r = 2, K = 40, a = 30, μ = 0.8, D = 0.3, H = 2, h = 23, τ = 12,
β = 0.8 and (x(0), y(0)) = (35,20)

order one homoclinic cycle is also broken, but no new
order one periodic solution is generated at the same
time, that is to say, the system (2) will have no pe-
riodic solution in the region Ω1 and all the solutions
passing through the region Ω1 will reach the x-axis af-
ter limited time which means the predators will finally
die out (see Fig. 8). These results illustrate that it also
demands reasonable control of the impulsive harvest
yield in order to form a good ecological environment
and avoid the occurrence of resource exhaustion.
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