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Abstract. The environment of HIV-1 infection and treatment could be non-
periodically time-varying. The purposes of this paper are to investigate the

effects of time-dependent coefficients on the dynamics of a non-autonomous

and non-periodic HIV-1 infection model with two delays, and to provide ex-
plicit estimates of the lower and upper bounds of the viral load. We established

sufficient conditions for the permanence and extinction of the non-autonomous
system based on two positive constants R∗ and R∗ (R∗ ≥ R∗) that could

be precisely expressed by the coefficients of the system: (i) If R∗ < 1, then

the infection-free steady state is globally attracting; (ii) if R∗ > 1, then the
system is permanent. When the system is permanent, we further obtained

detailed estimates of both the lower and upper bounds of the viral load. The

results show that both R∗ and R∗ reduce to the basic reproduction ratio of the
corresponding autonomous model when all the coefficients become constants.

Numerical simulations have been performed to verify/extend our analytical re-

sults. We also provided some numerical results showing that both permanence
and extinction are possible when R∗ < 1 < R∗ holds.

1. Introduction. Mathematical modeling of virus infections such as human im-
munodeficiency virus type 1 (HIV-1) has improved our understanding of the virus
dynamics (see for example [6, 10, 11, 17, 18, 19, 20, 21, 22, 23, 24, 34]). Most of
the HIV models have used constant coefficients for the infection rate, death rate
of infected cells, viral production rate, viral clearance rate, and the effectiveness
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of antiretroviral therapy. However, the environment of HIV-1 infection and treat-
ment may not be time-invariant. For example, the drug efficacy of antiretroviral
agents can be oscillating because of dosing. No progeny virus is generated during
the eclipse phase of the viral life cycle, after which the viral production rate in-
creases [8]. A recent experiment in rhesus macaque monkeys infected with simian
immunodeficiency virus (SIV, which infects macaques and leads to a clinical im-
munodeficiency syndrome similar to AIDS in HIV-infected humans) suggested that
the infectivity of virus changes over time during infection [15]. A new model with
time-dependent infectivity was shown to fit the data significantly better than the
model with constant infectivity [31].

A number of non-autonomous epidemiological models [2, 7, 12, 13, 16, 28, 29, 30,
33, 36] have been proposed to account for the effects of seasonal (or periodic) changes
such as contact rates [3, 4, 7], birth rates of populations, and periodic vaccinations
[5]. In many of these non-autonomous epidemic models with (or without) delay,
uniform persistence was either considered or studied by the persistence theory of
discrete dynamical systems. Recently, a few non-autonomous HIV-1 viral infection
models have been studied such as [1, 4, 9, 14, 25, 27, 32, 35], where time-varying
coefficients (especially periodic coefficients) were used in within-host infection or
epidemic HIV models. For example, Rong et al. [25] employed a two-strain model
to study the emergence of drug resistance during antiretroviral therapy. Lou et
al. [14] extended the model by including impulsive antiretroviral drug effects to
investigate emergence of drug resistance during the course of different treatment
programs. In [35], Yang et al. considered an HIV model with periodic regimen
and obtained threshold conditions for the extinction and uniform persistence of
the disease using the basic reproduction ratio for a periodic system. These models
have investigated how time-varying drug efficacy due to the drug dosing sched-
ule affects the dynamics of HIV infection. In addition, Samanta [27] considered
a non-autonomous stage-structured HIV/AIDS epidemic model, established suffi-
cient conditions for the permanence and extinction of the disease, and provided an
estimate for the eventual lower bound of infected persons.

Although within-host HIV-1 models including periodic drug effectiveness have
been studied [1, 4, 14, 25, 32, 35], up to now, a general non-autonomous HIV-1
model (not necessarily periodic) with time delays has not been considered. Since
the popular techniques to address the periodic model, such as the basic reproduc-
tion ratio derivation and the persistence theory of periodic epidemic systems, are
not applicable to the time-varying model of non-periodic type, analysis of such
a model is not trivial. So far, no criteria for the extinction and permanence of
the non-autonomous within-host viral dynamic model have been proposed. The
relationship of the conditions for extinction or uniform persistence of the general
non-autonomous delayed HIV model and the system with periodic drug effective-
ness remains unclear. We also lack an explicit estimate of the viral load using lower
or upper bounds of model parameters. Our study seems to be the first attempt
to studying the dynamics of a general non-autonomous HIV-1 dynamics with time
delays, and to addressing the explicit estimates of the lower and upper bounds of
the viral load when the system is permanent.

In this paper, using the oscillation theory for differential equations, we provide
sufficient conditions for the permanence and extinction of the non-autonomous sys-
tem. These conditions are expressed in terms of two positive threshold values which
can be explicitly estimated from the range of time-varying coefficients. The two
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values will become the basic reproductive ratio of the corresponding autonomous
system when all the coefficients become constants. We also obtain explicit estimate
of the viral load using the lower and upper bounds of coefficients.

The paper is organized as follows. In the next section, we introduce our main
model, and give some Lemmas and definitions there. In section 3, we study the
permanence and extinction of the main model. In the following section, we perform
numerical simulations to verify/extend our analytical results. At the end of the
paper, we give a brief summary of the results.

2. Model and preliminary results.

2.1. The non-autonomous model with delays. The general model given by the
following system of integro-differential equations was originally proposed by Nelson
and Perelson (see [19], Eq. (23)):

ẋ(t) = λ− µx(t)− (1− nrt)kx(t)v(t),

ẏ(t) = (1− nrt)k
∫ ∞

0

G1(ξ)x(t− ξ)v(t− ξ)dξ − δy(t),

v̇(t) = (1− np)Nδ
∫ ∞

0

G2(ξ)y(t− ξ)dξ − cv(t),

(1)

where x, y and v are the concentrations of uninfected target cells, infected cells, and
free virus, respectively. The positive constant λ is the rate at which new target
cells are generated. µ > 0, δ > 0 are the death rates of uninfected target cells and
infected cells, respectively. k > 0 denotes the constant rate at which uninfected
cells become infected cells by contacting with virus particles. N > 0 is the total
number of new virus particles produced by each infected cell during its life time
1
δ . So, the virus is produced at the rate δN . c ≥ 0 denotes the rate at which the
virus is cleared from the blood. The constants nrt, np ∈ [0, 1] are the efficacies
of reverse transcriptase inhibitors (RTs) and protease inhibitors (PIs), respectively.
As mentioned in Nelson and Perelson [19], the two functions G1(ξ) and G2(ξ) are
delay kernels. If G1(ξ) = e−δ1τ1δ(ξ − τ1) and G2(ξ) = e−δτ2δ(ξ − τ2), where δ(·) is
the Dirac delta function, then system (1) reduces to

ẋ(t) = λ− µx(t)− (1− nrt)kx(t)v(t),

ẏ(t) = (1− nrt)ke−δ1τ1x(t− τ1)v(t− τ1)− δy(t),

v̇(t) = (1− np)Nδe−δτ2y(t− τ2)− cv(t),
(2)

where τ1 can be regarded as the time needed for the infected cell to finish the reverse
transcription (RT) after viral entry and τ2 is the time needed for the infected cell
(that has finished RT) to go through the rest processes and produce new virions.
Here, δ1 is the death rate of infected cells that have not finished RT, and it is less
than δ because of low virion expression, and thus less immune attack during the
early stage of infection.

In this paper, we investigate a non-autonomous HIV-1 infection model with two
time delays as follows:

ẋ(t) = λ(t)− µ(t)x(t)− (1− nrt(t))k(t)x(t)v(t),

ẏ(t) = (1− nrt(t))k(t)e−
∫ τ1
0 δ1(s)dsx(t− τ1)v(t− τ1)− δ(t)y(t),

v̇(t) = (1− np(t))N(t)δ(t)e−
∫ τ2
0 δ(s)dsy(t− τ2)− c(t)v(t),

(3)

where functions λ(t), µ(t), k(t), δ(t), δ1(t), N(t), c(t), nrt(t) and np(t) correspond to
parameters λ, µ, k, δ, δ1, N, c, nrt and np in model (2), respectively.
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For convenience of notations, we set

β(t) = (1− nrt(t))k(t), β1(t) = β(t)e−
∫ τ1
0 δ1(s)ds,

γ(t) = (1− np(t))N(t)δ(t)e−
∫ τ2
0 δ(s)ds,

(4)

which simplify (3) to the following system: ẋ(t) = λ(t)− µ(t)x(t)− β(t)x(t)v(t),
ẏ(t) = β1(t)x(t− τ1)v(t− τ1)− δ(t)y(t),
v̇(t) = γ(t)y(t− τ2)− c(t)v(t).

(5)

2.2. Preliminary results of (5). In the following, we will introduce some as-
sumptions and notations for system (5):

(H1) Functions λ(t), µ(t), β(t), β1(t), δ(t), δ1(t), γ(t), c(t) are positive continuous
bounded and have positive lower bounds.

(H2) If f(t) is a continuous bounded function defined on [0,+∞), then we set

f l = lim inf
t→+∞

f(t), fu = lim sup
t→+∞

f(t).

The initial condition of (5) is given as

x(θ) = ϕ1(θ), y(θ) = ϕ2(θ), v(θ) = ϕ3(θ), −τ ≤ θ ≤ 0, ϕi(0) > 0, i = 1, 2, 3, (6)

where ϕ = (ϕ1, ϕ2, ϕ3)T such that ϕi(θ) ≥ 0 (i = 1, 2, 3) for all θ ∈ [−τ, 0], τ =
max{τ1, τ2}, and C denotes the Banach space C([−τ, 0], R3) of continuous functions
mapping the interval [−τ, 0] into R3 and is equipped with the norm of an element
ϕ in C by

‖ϕ‖ = sup
−τ≤θ≤0

{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|}.

In order to investigate the persistence and extinction for the system (5), we
introduce the following definition.

Definition 2.1. The system (5) is said to be permanent if there are positive con-

stants q, q̃i and L, L̃i(i = 1, 2) such that

q ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ L,

q̃1 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ L̃1,

q̃2 ≤ lim inf
t→+∞

v(t) ≤ lim sup
t→+∞

v(t) ≤ L̃2,

hold for any solution (x(t), y(t), v(t)) of (5) with initial condition (6). Here q, q̃i
and L, L̃i (i = 1, 2) are independent of (6).

Lemma 2.2. (see [36]) Consider the following non-autonomous linear equation

ż(t) = λ(t)− µ(t)z(t). (7)

Suppose that assumptions (H1) and (H2) hold, then we have the following results:
(1) Denote the ultimate limit of all the solutions of Eq. (7) with the initial value
z(0) > 0 by z∗(t). z∗(t) is bounded and globally uniformly attractive on R+ =
(0,+∞).
(2) There exist m,M > 0, such that m < lim inf

t→+∞
z(t) ≤ lim sup

t→+∞
z(t) < M.

(3) When Eq. (7) is ω-periodic, then Eq. (7) has a unique nonnegative ω-periodic
solution z∗(t) which is globally uniformly attractive.
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(4) If µ(t) > 0 for all t ≥ 0 and

0 < lim inf
t→+∞

λ(t)

µ(t)
≤ lim sup

t→+∞

λ(t)

µ(t)
<∞,

then for any solution z(t) of Eq. (7) with the initial value z(0) > 0, we have(λ(t)

µ(t)

)l
< lim inf

t→+∞
z(t) ≤ lim sup

t→+∞
z(t) <

(λ(t)

µ(t)

)u
,

where (λ(t)

µ(t)

)l
= lim inf

t→+∞

λ(t)

µ(t)
,
(λ(t)

µ(t)

)u
= lim sup

t→+∞

λ(t)

µ(t)
.

Lemma 2.3. The solution (x(t), y(t), v(t)) of system (5) with (6) is positive and
bounded for all t ≥ 0.

Proof. Since the right hand side of system (5) is completely continuous, the solution
(x(t), y(t), v(t)) of system (5) with initial condition (6) exists and is unique. Clearly,
from system (5), we have

x(t) = x(0)e−
∫ t
0

(µ(s)+β(s)v(s))ds +

∫ t

0

λ(s)e
∫ s
t

(µ(θ)+β(θ)v(θ))dθds,

y(t) = y(0)e−
∫ t
0
δ(s)ds +

∫ t

0

β1(s)x(s− τ1)v(s− τ1)e
∫ s
t
δ(θ)dθds,

v(t) = v(0)e−
∫ t
0
c(s)ds +

∫ t

0

γ(s)y(s− τ2)e
∫ s
t
c(θ)dθds.

(8)

It is evident that x(t) > 0 for all t ≥ 0 since x(0) > 0.
Next, we will prove that y(t), v(t) > 0 for all t ≥ 0. If they are not true, then

there exists t0 > 0 such that

min{y(t), v(t)}t=t0 = 0 and min{y(t), v(t)}t∈[0,t0) > 0.

If y(t0) ≤ 0, by (8), we get

y(t0) = y(0)e−
∫ t0
0 δ(s)ds +

∫ t0

0

β1(s)x(s− τ1)v(s− τ1)e
∫ s
t0
δ(θ)dθ

ds

≥ y(0)e−
∫ t0
0 δ(s)ds > 0,

which leads to a contradiction. Thus, y(t) > 0, for all t ≥ 0.
Similarly, by (8), v(t) > 0, for all t ≥ 0. Thus, we obtain x(t) > 0, y(t) >

0, v(t) > 0 for all t ≥ 0 since x(0), y(0), v(0) > 0.
In the following, we will show that x(t) > 0, y(t) > 0, v(t) > 0 are bounded for

all t ≥ 0.

Let H(t) = x(t) +
βl

βu1
y(t + τ1) +

βlδl

2βu1 γ
u
v(t + τ1 + τ2), and σ = min{µl, δ

l

2 , c
l},

then we get

Ḣ(t) = λ(t)− µ(t)x(t) +
( βl
βu1

(
β1(t+ τ1)− β(t)

)
x(t)v(t)

+
( βlδl

2βu1 γ
u
γ(t+ τ1 + τ2)− βl

βu1
δ(t+ τ1)

)
y(t+ τ1)
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− βlδl

2βu1 γ
u
c(t+ τ1 + τ2)v(t+ τ1 + τ2)

≤ λ(t)− µlx(t)− βl

βu1
· δ

l

2
y(t+ τ1)− βlδlcl

2βu1 γ
u
v(t+ τ1 + τ2)

≤ λu − σH(t),

which implies that

lim sup
t→+∞

H(t) ≤ λu

σ
. (9)

Thus, we easily have that

lim sup
t→+∞

y(t) ≤ βu1 λ
u

βlσ

∆
= L̃1, lim sup

t→+∞
v(t) ≤ 2βu1 γ

uλu

βlδlσ

∆
= L̃2,

where ∆ means “is defined as”. According to the first equation of system (5), we

have ẋ(t) ≤ λu − µlx(t). By Lemma 2.2, we have lim sup
t→+∞

x(t) ≤ λu

µl
∆
= L. This

completes the proof of Lemma 2.3.

Lemma 2.4. For any monotonic increasing {tn}∞n=1 large enough, there exist c1 >
0, c2 > 0 such that

y(tn − s) ≤ c1y(tn), v(tn − s) ≤ c2v(tn), 0 ≤ s ≤ τ, τ = max{τ1, τ2}.

Proof. According to the second equation of (5), we can obtain

ẏ(t) ≥ −δ(t)y(t) ≥ −δuy(t).

Integrating the above inequality from tn − s to tn, we have

y(tn) ≥ y(tn − s)e−
∫ tn
tn−s δ

udθ = e−δ
usy(tn − s) ≥ e−δ

uτy(tn − s).

So y(tn − s) ≤ eδ
uτy(tn)

∆
= c1y(tn). Similarly, from the third equation of (5), we

can obtain v̇(t) ≥ −c(t)v(t) ≥ −cuv(t). Integrating this inequality from tn − s to

tn, we obtain v(tn − s) ≤ ec
uτv(tn)

∆
= c2v(tn).

Lemma 2.5. The solution (x(t), y(t), v(t)) of system (5) with initial condition (6)
satisfies

lim inf
t→+∞

x(t) ≥

(
λ(t)

µ(t) + 2β(t)
βu1 γ

uλu

βlδlσ

)l
∆
= q.

Proof. By Lemma 2.3, H(t) ≥ βlδl

2βu1 γ
u v(t + τ1 + τ2). From (9), for any ε > 0, there

exists a large enough t0 > 0 such that

v(t) ≤ 2
βu1 γ

uλu

βlδlσ
+ ε, t ≥ t0.

Thus, from the first equation of system (5), when t ≥ t0, we have

ẋ(t) ≥ λ(t)−
[
µ(t) + β(t)(2

βu1 γ
uλu

βlδlσ
+ ε)

]
x(t),

which implies that

lim inf
t→+∞

x(t) ≥

(
λ(t)

µ(t) + 2β(t)
βu1 γ

uλu

βlδlσ

)l
∆
= q. (10)
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Next, we derive the conditions for the permanence and extinction of system (5).
We define two functions as follows:

w(t) = y(t) +
δu

γl
v(t) +

∫ t

t−τ1
β1(s+ τ1)x(s)v(s)ds+

δu

γl

∫ t

t−τ2
γ(s+ τ2)y(s)ds, (11)

and

G(t) = y(t) +
δl

γu
v(t) +

∫ t

t−τ1
β1(τ1 + ξ)x(ξ)v(ξ)dξ+

δl

γu

∫ t

t−τ2
γ(τ2 + ξ)y(ξ)dξ. (12)

For these two functions, we have the following results.

Lemma 2.6. For any t large enough, we have

(i)

w(t) ≤ k1y(t) + k2v(t), (13)

where

k1 = 1 +
δuγu

γl
c1τ, k2 =

δu

γl
+
βu1 λ

u

µl
c2τ.

(ii)

G(t) ≤ k′1y(t) + k′2v(t) ≤ w(t), (14)

where

k′1 = 1 + δlc1τ, k
′
2 =

δl

γu
+
βu1 λ

u

µl
c2τ.

Proof. From (11) and Lemmas 2.3-2.5, we have

w(t) = y(t) +
δu

γl
v(t) +

∫ t

t−τ1
β1(s+ τ1)x(s)v(s)ds+

δu

γl

∫ t

t−τ2
γ(s+ τ2)y(s)ds

≤ y(t) +
δu

γl
γuc1τy(t) + (

δu

γl
+ βu1

λu

µl
c2τ)v(t)

∆
= k1y(t) + k2v(t).

Similarly, from (12) and Lemmas 2.3-2.5, we have

G(t) ≤ k′1y(t) + k′2v(t) ≤ w(t).

3. Permanence and extinction.

3.1. Viral persistence. Denote

R∗ =
βl1γ

lλl

δucuµu
, R∗ =

βu1 γ
uλu

δlclµl
. (15)

We have the following Theorems.

Theorem 3.1. Suppose that system (5) with initial condition (6) satisfies R∗ > 1,
then the system (5) is permanent. More specifically we have the following results:

(I)

lim inf
t→+∞

y(t) ≥ q̃1, lim inf
t→+∞

v(t) ≥ q̃2, (16)

where

q̃1 =
1

2

βl1q

δu
γle−c

u(τ+2p)

γlk2c2 + k1cu
q1, q̃2 =

1

2

γlq1e
−cu(τ+2p)

γlk2c2 + k1cu
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with positive constants

p =
1

µu(R∗ + 1)
ln

2R∗
R∗ − 1

, q1 =
1

2
min{ c

lµu

γuβu
(R∗ − 1),

δuµu

γlβu
(R∗ − 1)} (17)

and c2, q, k1 and k2 are defined in Lemmas 2.4, 2.5 and 2.6, respectively.
(II)

lim sup
t→+∞

y(t) ≤ L̃1, lim sup
t→+∞

v(t) ≤ L̃2, (18)

where L̃1, L̃2 are defined in Lemma 2.3.

We will use the following proposition in combination with Lemma 2.3 to complete
the proof of this theorem.

Proposition 1. Assume that R∗ > 1, then for any positive solution (x(t), y(t), v(t))
of system (5) with initial condition (6), we have lim inf

t→+∞
y(t) ≥ q̃1, and lim inf

t→+∞
v(t) ≥

q̃2, where q̃1 and q̃2 are defined in Theorem 3.1.

Proof. we prove it using four steps:

Step 1. We will prove that there exists q1 > 0 such that lim sup
t→+∞

y(t) ≥ q1 for any

solution of system (5). Suppose that it is not true, then we have lim sup
t→+∞

y(t) < q1.

From the third equation of system (5), we get v̇(t) ≤ γuq1− clv(t). By Lemma 2.2,

lim sup
t→+∞

v(t) < q1
γu

cl
.

Thus, from the first equation of system (5), we obtain

ẋ(t) ≥ λl − (µu + βuq1
γu

cl
)x(t).

By Lemma 2.2 again, we have

lim inf
t→+∞

x(t) ≥ λl

µu + βuq1
γu

cl

∆
= h(q1).

According to the definition of w(t) in (11), we have

ẇ(t) = β1(t)x(t− τ1)v(t− τ1)− δ(t)y(t) +
δu

γl
(γ(t)y(t− τ2)− c(t)v(t))

+β1(t+ τ1)x(t)v(t)− β1(t)x(t− τ1)v(t− τ1)

+
δu

γl
(γ(t+ τ2)y(t)− γ(t)y(t− τ2))

≥ [β1(t+ τ1)x(t)− δu

γl
c(t)]v(t)

≥ [βl1h(q1)− δu

γl
cu]v(t).

(19)

From (17), it follows that q1 ≤
1

2

clµu

γuβu
(R∗ − 1). Thus,

ẇ(t) ≥
( βl1λ

l

µu[1 + 1
2 (R∗ − 1)]

− δu

γl
cu
)
v(t) =

δucu

γl
R∗ − 1

R∗ + 1
v(t) > 0, if R∗ > 1,

which means that w(t) is increasing. By Lemma 2.3, w(t) is positive bounded.
There exists a constant w∗ > 0 such that w(t)→ w∗ as t→ +∞. This shows that
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ẇ(t) → 0 as t → +∞. Thus, v(t) → 0, and then y(t) → 0 as t → +∞. Hence
w(t) → 0 as t → +∞. This generates a contradiction because w(t) > w(0) > 0.
Thus, lim sup

t→+∞
y(t) ≥ q1.

Step 2. We will show that there exists c0 = q1e
−(τ+2p)cu > 0 such that w(t) ≥ c0.

From (11) and Step 1, we obtain that ∀ t0 ≥ 0, w(t) < q1 is impossible for all
t ≥ t0. Hence, we will consider the following two possibilities:

(i) w(t) > q1 for all t large enough.
(ii) w(t) oscillates about q1 for all t large enough.
Obviously, we only need to consider the second case. Let t1 and t2 be sufficiently

large such that

w(t1) = w(t2) = q1, w(t) < q1, ∀t ∈ (t1, t2).

If t2 − t1 ≤ τ + 2p, where p is defined in Theorem 3.1, from (11), we have w(t) ≥
δu

γl
v(t). Thus,

v(t) ≤ q1γ
l

δu
, ∀t ∈ (t1 + τ, t2).

From the first equation of system (5), we get

ẋ(t) ≥ λl − (µu +
βuγlq1

δu
)x(t), ∀t ∈ (t1 + τ, t2). (20)

For any t ∈ (t1 + τ, t2), integrating the inequality (20) from t1 + τ to t, we have

x(t) ≥ x(t1 + τ) exp
(
−
∫ t

t1+τ

(µu +
βuγlq1

δu
)ds
)

+

∫ t

t1+τ

λl exp
(
−
∫ t

s

(µu +
βuγlq1

δu
)dθ
)
ds

≥ λl

µu +
βuγlq1

δu

(
1− exp

(
−(µu +

βuγlq1

δu
)(t− t1 − τ)

))
.

(21)

Thus, there exits

ε0 =
λl

2µu
R∗ − 1

R∗(R∗ + 1)
> 0, (22)

such that

x(t) ≥ λl

µu +
βuγlq1

δu

− ε0
∆
= x∆ ≥

λl

µu(R∗ + 1)

3R∗ + 1

2R∗
, ∀t ∈ (t1 + τ + p, t2). (23)

From (11) and (19), we further obtain

ẇ(t) ≥ (β1(t+ τ1)x(t)− δu

γl
c(t))v(t) ≥ −δ

ucu

γl
v(t) ≥ −cuw(t), ∀t ∈ (t1, t2). (24)

Noting that t2 − t1 ≤ τ + 2p, where p is defined in Theorem 3.1, we get

w(t) ≥ w(t1)e
−

∫ t
t1
cuds

= q1e
−(t−t1)cu ≥ q1e

−(τ+2p)cu ∆
= c0. (25)

If t2 − t1 > τ + 2p and t ∈ [t1, t1 + τ + 2p], then w(t) ≥ c0 is valid. When
t ∈ [t1 + τ + 2p, t2], from (19) and (23), we have

ẇ(t) ≥
(
βl1x∆ −

δu

γl
cu
)
v(t) ≥ δu

γl
cu

R∗ − 1

2(R∗ + 1)
v(t) > 0, if R∗ > 1.
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By the monotonicity of w(t) in t ∈ [t1 + τ + 2p, t2], we have

w(t) ≥ w(t1 + τ + 2p) ≥ c0, for all t ∈ [t1 + τ + 2p, t2].

Therefore, we have that if R∗ > 1, then there exists a positive constant c0 such that
w(t) ≥ c0 > 0 for all t large enough.

Step 3. We will show that

lim inf
t→+∞

v(t) ≥ q̃2, (26)

where

q̃2 =
1

2

γlc0
γlk2c2 + k1cu

=
1

2

γlq1e
−cu(τ+2p)

γlk2c2 + k1cu
> 0,

and c2, k1 and k2 are defined in Lemmas 2.4 and 2.6.
If (26) is not true, then we have lim inf

t→+∞
v(t) < q̃2. By the definition of inferior

limit of v(t), we obtain that there exists a time-sequence {tn}∞n=1 such that

v(tn) ≤ q̃2, tn → +∞ as n→ +∞.

From Lemmas 2.3-2.6, we have

v(tn − s) ≤ c2v(tn), 0 ≤ s ≤ τ, and c0 ≤ w(tn) ≤ k1y(tn) + k2v(tn).

Thus,

y(tn − τ2) ≥ c0 − k2v(tn − τ2)

k1
≥ c0 − k2c2v(tn)

k1
.

From the third equation of system (5), we can obtain

v̇(tn) ≥ γ(tn)
c0 − k2c2v(tn)

k1
− c(tn)v(tn)

≥ γlc0
k1
− (cu +

γlk2c2
k1

)v(tn)

≥ γlc0
k1
− (cu +

γlk2c2
k1

)q̃2 >
γlc0
2k1

> 0.

(27)

Next, we consider the following three cases.
(i) If v(tn) oscillates about q̃2, obviously, there exists a subsequence {tnj} such

that tnj → +∞, as j →∞, and v̇(tnj ) = 0. This is a contradiction from v̇(tn) > 0.
(ii) If v(tn) < q̃2 and v(tn) is uniformly ultimately increasing, by v̇(tn) > 0, there

exists Tn > 0 such that v(Tn) → v∗(constant) ≤ q̃2 as n → ∞. Thus, v̇(Tn) → 0.

Noting (27), we have lim
n→∞

v̇(Tn) >
γlc0
2k1

> 0. This leads to a contradiction.

(iii) If v(tn) < q̃2 and v(tn) is not uniformly ultimately increasing, then for any
T > 0, there exists tT > T such that v̇(tT ) < 0 and v(tT ) < q̃2. This leads to a
contradiction again.

Therefore, we have

lim inf
t→+∞

v(t) ≥ q̃2.

Step 4. Lastly, we will prove that lim inf
t→+∞

y(t) ≥ q̃1, where q̃1 is defined in the

following (28).
By the second equation of system (5) and Lemma 2.5, we get

ẏ(t) = β1(t)x(t− τ1)v(t− τ1)− δ(t)y(t) ≥ βl1qq̃2 − δuy(t).
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According to Lemma 2.2, we have

lim inf
t→+∞

y(t) ≥ βl1qq̃2

δu
=

1

2

βl1q

δu
γle−c

u(τ+2p)

γlk2c2 + k1cu
q1 = q̃1. (28)

Remark 1. From Lemma 2.3 and Proposition 1, we obtain

q ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ L,

and
q̃1 ≤ lim inf

t→+∞
y(t) ≤ lim sup

t→+∞
y(t) ≤ L̃1,

and
q̃2 ≤ lim inf

t→+∞
v(t) ≤ lim sup

t→+∞
v(t) ≤ L̃2.

This completes the proof of Theorem 3.1.

3.2. Viral clearance. Next we provide the sufficient condition for the extinction
of both virus and infected cells for model (5).

Theorem 3.2. If R∗ < 1, then any positive solution (x(t), y(t), v(t)) of system
(5) with (6) satisfies lim

t→+∞
y(t) = 0, lim

t→+∞
v(t) = 0, and lim

t→+∞
|x(t) − z∗(t)| = 0,

where z∗(t) is the ultimate limit of all the solutions of Eq. (7) with the initial value
z(0) > 0.

Proof. From R∗ < 1, there exists a small ε > 0 such that

βu1 γ
u

δlcl

(
λu

µl
+ ε

)
< 1.

By the definition of G(t) in (12), we obtain

Ġ(t) ≤ β1(t+ τ1)x(t)v(t)− δl

γu
c(t)v(t) ≤

(
βu1 (

λu

µl
+ ε)− δlcl

γu

)
v(t)

=
δlcl

γu

(
βu1 γ

u

δlcl
(
λu

µl
+ ε)− 1

)
v(t)

≤ cl
(
βu1 γ

u

δlcl
(
λu

µl
+ ε)− 1

)
G(t).

Using R∗ < 1, we obtain Ġ(t) < 0, and lim
t→+∞

G(t) = 0. Thus we have

lim
t→+∞

y(t) = 0, lim
t→+∞

v(t) = 0.

Next, we consider the globally attracting property of x(t). Let z̃(t) = x(t)−z∗(t),
we have

˙̃z(t) = ẋ(t)− ż∗(t)
= −µ(t)z̃(t)− β(t)x(t)v(t).

Thus we have

|z̃(t)| =

∣∣∣∣z̃(0)e−
∫ t
0
µ(s)ds −

∫ t

0

β(s)x(s)v(s)e−
∫ t
s
µ(θ)dθds

∣∣∣∣
≤ |z̃(0)|e−

∫ t
0
µ(s)ds +

∫ t

0

β(s)x(s)v(s)e−
∫ t
s
µ(θ)dθds

≤ |z̃(0)|e−
∫ t
0
µ(s)ds +

βuλu

µl

∫ t

0

v(s)

eµl(t−s)
ds.

(29)
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From v(t) > 0, we know

A(t) =

∫ t

0

v(s)eµ
lsds (30)

is increasing with respect to t. Thus we obtain that A(t) has the property: either
lim

t→+∞
A(t) = A∗ (a positive constant), or lim

t→+∞
A(t) = +∞, since lim

t→+∞
v(t) = 0

and a simple calculation shows that

lim
t→+∞

βuλu

µl

∫ t
0
v(s)eµ

lsds

eµlt
=
βuλu

µl
lim

t→+∞

A(t)

eµlt
= 0. (31)

Thus, we easily get lim
t→+∞

|z̃(t)| = 0, that is lim
t→+∞

|x(t)− z∗(t)| = 0.

Remark 2. If we assume that all coefficients λ(t), µ(t), β(t), β1(t), δ(t), γ(t) and
c(t) are constant, then system (5) degenerates to the following autonomous system: ẋ(t) = λ− µx(t)− βx(t)v(t)

ẏ(t) = β1x(t− τ1)v(t− τ1)− δy(t)
v̇(t) = γy(t− τ2)− cv(t).

(32)

Evidently, we have

R∗ = R∗ = R0 =
β1

δ
· λ
µ
· γ
c
,

where R0 is the basic reproduction number of system (32). From Theorem 3.1, we
easily find that the main results in Liu and Wang [11] are improved and extended
in the present paper when R0 < 1.

4. Numerical example and sensitivity test of R∗ and R∗. Consider the fol-
lowing non-periodic time-varying HIV-1 system with delays:

ẋ(t) = λ− µx(t)− (1− a(0.5 sin(b(t2 + t)) + s))kx(t)v(t),
ẏ(t) = (1− a(0.5 sin(b(t2 + t)) + s))ke−δ1τ1x(t− τ1)v(t− τ1)− δy(t),
v̇(t) = Nδe−δτ2y(t− τ2)− cv(t),

(33)

where all parameters are defined in Table 1.
From (15), we have

R∗ =
(1− a(s+ 0.5))Nλe−δ1τ1e−δτ2

cµ
,

and

R∗ =
(1− a(s− 0.5))Nλe−δ1τ1e−δτ2

cµ
.

We chose parameters λ = 10000 ml−1day−1, µ = 0.01 day−1, k = 0.00002
ml day−1, a = 0.5, b = 3.5, s = 0.6, δ = 1 day−1, δ1 = 0.3 day−1, N = 20, c =
23 day−1, τ1 = 0.25 day, τ2 = 1 day. By Theorem 3.1, we have R∗ ≈ 2.676 > 1.
Thus, the system (33) is permanent (see FIG. 1).

When we chose parameters λ = 10000 ml−1day−1, µ = 0.1 day−1, k = 0.00002
ml day−1, a = 0.5, b = 3.5, s = 0.9, δ = 1 day−1, δ1 = 0.5 day−1, N = 20, c =
23 day−1, τ1 = 0.25 day, τ2 = 1 day, from Theorem 3.2, we have R∗ ≈ 0.476 < 1.
Thus, the system (33) goes to extinction (see FIG. 2).

When the condition in neither Theorem 3.1 nor Theorem 3.2 is satisfied, we pro-
vide the simulations in FIGs. 3 and 4: If we chose parameters λ = 10000 ml−1day−1,
µ = 0.03 day−1, k = 0.00002 ml day−1, a = 0.5, b = 3.5, s = 0.9, δ =
1 day−1, δ1 = 0.5 day−1, N = 20, c = 23 day−1, τ1 = 0.25 day, τ2 = 1 day,



A NON-AUTONOMOUS HIV-1 MODEL WITH TWO DELAYS 1795

Table 1. Parameter values in numerical simulations for system (33).

Parameters Base values Reference

λ : Recruitment rate of uninfected cells 104 cellsml−1day−1 [25]

µ : Death rate of uninfected cells 0.01 day−1 [25]

k : Infection rate 2 × 10−5 ml day−1 [23]
δ : Death rate of infected cells that have finished RT 1 day−1 [25]

δ1 : Death rate of infected cells that have not finished RT 0.5 day−1 [25]

a : The constant used in time-varying drug efficacy 0.5 —
s : The constant used in time-varying drug efficacy 0.6 or 0.9 —

b : The constant used in time-varying drug efficacy 3.5 —

N : Number of virion produced by an infected cell 20 —
c : Clearance rate of free virus 23 day−1 [25]

τ1 : Time needed to complete RT 0.25 day [26]

τ2 : Time between RT and the release of new virions 1 day —

we have R∗ ≈ 0.892 < 1 < R∗ ≈ 1.883, and the system (33) is permanent (see FIG.
3). If we let µ = 0.1 day−1, N = 50, and other parameters remain unchanged,
then we have R∗ ≈ 0.669 < 1 < R∗ ≈ 1.412, and the system (33) goes to extinction
(see FIG. 4). Thus, when R∗ < 1 < R∗, both viral persistence and extinction are
possible.

From the analysis we know that R∗, R
∗ are important values that determines

whether the virus can be cleared. In FIG. 5, we plotted the change of R∗ (or R∗)
as a function of one parameter (all the other parameters were fixed). We obtained
a threshold value for each parameter such that R∗ (or R∗) is 1. Specifically, when
λ < λ∗ (or λ < λ∗), or N < N∗ (or N < N∗), R∗ (or R∗) is less than 1. When µ
(or δ1 or δ or τ1 or τ2 or c) is greater than its corresponding threshold value, R∗ (or
R∗) is also less than 1.
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Figure 1. Dynamics of uninfected cells x(t), infected cells y(t),
viral load v(t) in (33) with initial value (30000,20000,50000) and
R∗ ≈ 2.676 > 1.
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Figure 2. Dynamics of uninfected cells x(t), infected cells y(t),
viral load v(t) in (33) with initial value (30000,20000,50000) and
R∗ ≈ 0.476 < 1.
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Figure 3. Dynamics of uninfected cells x(t), infected cells y(t),
viral load v(t) in (33) with initial value (30000,20000,50000) and
R∗ ≈ 0.892 < 1 < R∗ ≈ 1.883.

5. Conclusion. In this paper, we have formulated a model of HIV infection in-
corporating non-periodic coefficients and two intracellular time delays. We have
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Figure 4. Dynamics of uninfected cells x(t), infected cells y(t),
viral load v(t) in (33) with initial value (30000,20000,50000) and
R∗ ≈ 0.669 < 1 < R∗ ≈ 1.412.

developed a rigorous analysis of the model by applying the oscillation theory and
the comparison theory of differential equations.

Our analysis yields two positive constants R∗ and R∗ (see (15)), both of which
can be explicitly expressed by the parameters of the system, to obtain conditions
for the permanence and extinction of the virus. We derived a sufficient condition
(R∗ > 1) for the permanence of this general system (see Theorem 3.1 and FIG.
1), and a sufficient condition (R∗ < 1) for the clearance of the virus (see Theorem
3.2 and FIG. 2). From these results, we can obtain the complicated effects of the
time-varying parameters on the sufficient conditions for the permanence and the
extinction of the model.

When R∗ > 1 (i.e., the system is permanent), based on the explicitly parameter-

dependent values q̃2 and L̃2, we obtain estimates of the lower and upper bounds of
the viral load and their dependence on the parameters. When all the coefficients
are constant, the two values R∗ and R∗ reduce to the basic reproductive number of
the corresponding autonomous system (see Remark 2), and thus our work improved
some existing results of HIV models including time delays [11].

We performed numerical simulations using non-periodic drug effectiveness. The
numerical results confirmed our theoretical analysis. We also obtained the corre-
sponding permanence threshold values for all the parameters (see FIG. 5). These
values are important in determining whether the virus can be eradicated from in-
fected individuals. Moreover, our simulations suggest the significant differences in
the sensitivities of R∗ and R∗ to the different coefficients of the model.

We remark that the dynamics of our model are still unclear for the case of
R∗ < 1 < R∗, in which the virus may be persistent (see FIG. 3) or cleared (see
FIG. 4) under this condition. It remains an interesting future problem for a non-
autonomous HIV model.
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Figure 5. The relationships between R∗, R∗ and parameters
λ, µ, δ1, δ, τ1, τ2, N and c, respectively.
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In the previous works, by using the methods of persistence theory, threshold
dynamics for periodic HIV-1 models were established [14, 35]. However, the methods
used in these references are not applicable to our non-autonomous model (3) since
the coefficients are not necessarily periodic. Our methods may be used in the
analysis of permanence and extinction for other general time-varying mathematical
models (with or without delay).
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