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a b s t r a c t

HIV-1 infection and treatment may occur in the non-constant environment due to the time-

varying drug susceptibility and growth of target cells. In this paper, we propose a within-host

virus model with multiple stages for infected cells under time-varying environments, to study

how the multiple infected stages affect on the counts of viral load and CD4+-T cells. We es-

tablish the sufficient conditions for both persistent HIV infection and clearance of HIV infec-

tion based on two positive constants R∗, R∗. When the system is under persistent infection,

we further obtained detailed estimates of both the lower and upper bounds of the viral load

and the counts of CD4+-T cells. Furthermore, numerical simulations are carried out to verify

our analytical results and demonstrate the combined effects of multiple infected stages and

non-constant environments, and reflect that both persistence and clearance of infection are

possible when R∗ < 1 < R∗ holds. In particular, the numerical results exhibit the viral load

of system with multiple infected stages may be less than that with single infected stage, and

simulate the effect of time-varying environment of the autonomous system with multiple in-

fected stages. We expect that our theoretical and simulation results can provide guidance for

clinical therapy for HIV infections.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Over the last two decades there has been extensive research on modeling and analysis of the human immunodeficiency

virus (HIV) infection ([1–4,5–9]). Most HIV infection models focus on the single-infected stage for infected cells. The standard

technique for developing mathematical descriptions of HIV infection between virus particles and uninfected CD4+ T-cells is

to model the system with single-infected stage as a set of autonomous ordinary differential equations. This approach has led to

many insights into the factors that affect HIV infection and control. The infection remains asymptomatic for years, the population

of CD4+-T cells falls to low levels and the virus load sufficiently increases leading to the development of AIDS. However, it is very

important to establish an appropriate HIV model for HIV antiviral therapy and control, thus consideration of following factors

should attract more attention.

Firstly, multiple infected stages and treatment for infected cells are more interesting. As noted in [11–21], they investigated

that an infected individual enters the first infectious stages at the moment of infection and then progresses through all these

stages until the last one, with the infectiousness of a person depending upon his current disease stage. In [17], Hyman et al.
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suggested that some infected individuals could pass through four infection stages: (1) the highly infectious acute stage in the first

few weeks; (2) the low infectivity early chronic stage; (3) the high infectivity late chronic stage; (4) the AIDS stage. And Sedaghat

et al. [21] established two-stages infection model based on three different kinds of levels of virus during the chronic phase of

infection. Samanta [20] investigated a non-autonomous stage-structured HIV/AIDS epidemic model with two stages between

HIV/AIDS patients not the host cells in the body, established some sufficient conditions on the permanence and extinction of

the disease, and obtained the explicit formula of the eventual lower bounds of infected individuals. Thus, additional multiple

infected stages and treatment for infected cells are important and realistic to model for HIV-1 pathogenesis and drug treatment

dynamics.

On the other hand, the non-autonomous phenomenon, are familiar features in virus infection models, such as varying in-

fection rate (see [22–29]), and especially the periodic drug therapy and periodic drug effectiveness, occur in many realistic

within-host models, relevant to our study here are the works [30–34] and so on.

Motivated by these factors above, especially multiple infected stages were introduced in the non-autonomous HIV infection

model, to give a more appropriate model and better understanding of the antiretroviral drug during HIV-1 virus infection. Our

primary goals of this paper are to establish such precise estimates of the viral load using the lower and upper bounds of coeffi-

cients, and to investigate what happens if the model including multiple infected stages.

In this paper, we will provide some sufficient conditions on the permanence and extinction of system (1), which are different

from the popular technique of uniform persistence theory to address the virus dynamic system in a periodic environment [38].

To our best knowledge, if the system is a periodic system, we can obtain the threshold values by using the theory of uniform

persistence for periodic systems developed by Prof. Xiaoqiang Zhao (see [10,25]); if the system is almost periodic without delay,

then the conditions of the threshold values may be weakened, as shown in [28]. Our system is a general non-autonomous model

(not necessarily periodic) with multiple infected stages. The standard techniques to address periodic (or almost periodic) sys-

tems, such as the basic reproduction ratio derivation and the persistence theory of periodic (or almost periodic) systems, are not

applicable here. Fortunately, the analysis techniques in [34] (with single-infected stage) provided a tool so that one can do this

simple non-autonomous HIV infection model, which make it possible for us to consider the model with multi-stage infection

and treatment. Thereupon, the research of non-autonomous HIV infection model multiple infected stages is not only interesting

but also necessary, and more challenging than the single-infected stage [34].

This article is organized as follows. The next section presents a non-autonomous HIV-1 model with multiple infected stages

and gives some preliminaries lemmas. Our main results on permanence and extinction of system (1) are completely determined

by the threshold values and obtained in Section 3. In Section 4, numerical simulations are considered to illustrate our main

results. We also investigate the impact of multiple infected stages on HIV infection through the sensitivity analysis of R∗ and

comparisons between delayed non-autonomous HIV-1 models with single-infected stage and three infected stages. A brief con-

clusion is given in Section 5.

2. Model formulation and preliminaries

HIV replication cycle may contain much stages, such as reverse transcription, integration, assembly and viral release and so

on. Different drug classes act on specific stages. A comprehensive model including multiple stages may be more accurate in

studying the dynamics of HIV decay under treatment from different drug classes. There are some clinical and experimental data

that show that drugs acting on later stages of viral replication cycle may lead to a more rapid viral load decline. A model including

two stages have been developed to study the dynamics under treatment in Sedaghat et al. [21]. They showed that the stage in the

HIV-1 life cycle at which a drug acts may affect the observed decay dynamics, which is the later in the life cycle an inhibitor acts,

the more rapid the decay in viremia. In this section, based on the works of [11,17,21,35–37], we formulate a general multistage

infection progression model between uninfected CD4+ T-cells and virus particles which traverses n different stages during its

life-cycle. We distinguish the host populations into the following compartments: uninfected cells x(t), a succession of infected

cells yi(t), i = 1, 2, . . . , n, whose members are in the ith stage of the infection progression, and virus particles v(t). Based on the

above assumptions and Section 1, a non-autonomous HIV-1 model with multiple stages for infected cells can be considered as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = λ(t) − μ(t)x(t) − β(t)x(t)v(t),
ẏ1(t) = β(t)x(t)v(t) − k1(t)y1(t),

ẏ2(t) = k̃1(t)y1(t) − k2(t)y2(t),

ẏ3(t) = k̃2(t)y2(t) − k3(t)y3(t),
. . .

ẏn(t) = k̃n−1(t)yn−1(t) − kn(t)yn(t),

v̇(t) = k̃n(t)yn(t) − δ(t)v(t),

(1)

where

ki(t) = k̃i(t) + δi(t), k̃i(t) = (1 − εII(t))ki(t), i = 1, . . . , n − 1,

k̃n(t) = (1 − εPI(t))N(t)kn(t), β(t) = (1 − εRT (t))k(t), (2)

and the meanings of functions λ(t), μ(t), ki(t), δi(t) (i = 0, 1, . . . , n), k(t), δ(t), N(t), εRT (t), εII(t) and εPI(t) appeared in (2) are in

accordance with the corresponding autonomous system parameters λ, μ, kj, k, δ, N, εRT, εII and εPI, respectively.
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The initial condition of system (1) is given by

x(0) > 0, yi(0) > 0 for some i ∈ {1, 2, . . . , n}. (3)

In the following, we will give some assumptions and notations for system (1)

(A1) Functions λ(t), μ(t), β(t), ki(t), δi(t), k̃i(t) (i = 1, . . . , n) and δ(t) are positive continuous bounded and have positive lower

bounds.

(A2) If f(t) is a continuous bounded function defined on [0, +∞), then we set

f l = lim inf
t→+∞

f (t) f u = lim sup
t→+∞

f (t).

Definition 1. The system (1) is said to be permanent if there exists positive constants q0, q̃1, . . . , q̃n+1 and L̃0, L̃1, . . . , L̃n+1 such

that

q0 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ L̃0,

q̃i ≤ lim inf
t→+∞

yi(t) ≤ lim sup
t→+∞

yi(t) ≤ L̃i, i = 1, 2, . . . , n,

q̃n+1 ≤ lim inf
t→+∞

v(t) ≤ lim sup
t→+∞

v(t) ≤ L̃n+1,

hold for any solution (x(t), y1(t), . . . , yn(t), v(t)) of system (1) with initial condition (3). Here q0, q̃1, . . . , q̃n+1, L̃0, L̃1, . . . , L̃n+1 are

independent of (3).

Lemma 1. ([38]) Consider the following non-autonomous linear equation

ẇ(t) = λ(t) − μ(t)w(t). (4)

Suppose that assumptions (A1) and (A2) hold, then we have the following result:

(i) Denote the ultimate limit of all the solutions of Eq. (4) with the initial value w(0) > 0 by w∗(t), where w∗(t) is bounded and

globally uniformly attractive on R+.

(ii) There exist m, M > 0, such that m < lim inf
t→+∞

w(t) ≤ lim sup
t→+∞

w(t) < M.

(iii) If μ(t) > 0 for all t ≥ 0 and

0 < lim inf
t→+∞

λ(t)

μ(t)
≤ lim sup

t→+∞

λ(t)

μ(t)
< +∞,

then for any solution w(t) of Eq. (4) with the initial condition w(0) > 0, we have

lim inf
t→+∞

λ(t)

μ(t)
=
(

λ(t)

μ(t)

)
l < lim inf

t→+∞
w(t) ≤ lim sup

t→+∞
w(t) <

(
λ(t)

μ(t)

)
u = lim sup

t→+∞

λ(t)

μ(t)
.

Lemma 2. The solution (x(t), y1(t), . . . , yn(t), v(t)) of system (1) with initial condition (3) is positive and bounded for all t ≥ 0.

Proof. Since the right hand side of system (1) is completely continuous, so the solution (x(t), y1(t), . . . , yn(t), v(t)) of (1) with

initial condition (3) exists and is unique.

By system (1), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = x(0)e− ∫ t
0 (μ(s)+β(s)v(s))ds +

∫ t

0

λ(s)e
∫ s

t (μ(θ )+β(θ )v(θ ))dθ ds,

y1(t) = y1(0)e− ∫ t
0 k1(s)ds +

∫ t

0

β(s)x(s)v(s)e
∫ s

t k1(θ )dθ ds,

yi(t) = yi(0)e− ∫ t
0 ki(s)ds +

∫ t

0

k̃i−1(s)yi−1(s)e
∫ s

t ki(θ )dθ ds, i = 2, 3, . . . , n.

v(t) = v(0)e− ∫ t
0 δ(s)ds +

∫ t

0

k̃n(s)yn(s)e
∫ s

t δ(θ )dθ ds.

(5)

Similar to Lemma 2.3 in [34], we easily obtain x(t), y1(t), . . . , yn(t), v(t) > 0 for all t ≥ 0 since x(0), y1(0), . . . , yn(0), v(0) > 0.

Now, we will show that (x(t), y1(t), . . . , yn(t), v(t)) are bounded for all t ≥ 0. Let

H(t) = x(t) + β l

βu
y1(t) + β lkl

1

2βuk̃u
1

y2(t) + β lkl
1kl

2

22βuk̃u
1
k̃u

2

y3(t)

+ · · · + 1

2n−1
· β l

βu
·

n−1∏
i=1

(
kl

i

k̃u
i

)
yn(t) + 1

2n
· β l

βu
·

n∏
i=1

(
kl

i

k̃u
i

)
v(t). (6)
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Then, we can compute the time derivative of H(t) along the solution of (1) as follows:

Ḣ(t) = λ(t) − μ(t)x(t) − β(t)x(t)v(t) + β l

βu
[β(t)x(t)v(t) − k1(t)y1(t)] + β lkl

1

2βuk̃u
1

[̃k1(t)y1(t) − k2(t)y2(t)]

+ β lkl
1kl

2

22βuk̃u
1
k̃u

2

[̃k2(t)y2(t) − k3(t)y3(t)] + · · · + 1

2n−1
· β l

βu
·

n−1∏
i=1

(
kl

i

k̃u
i

)
× [̃kn−1(t)yn−1(t) − kn(t)yn(t)]

+ 1

2n
· β l

βu
·

n∏
i=1

(
kl

i

k̃u
i

)
[̃kn(t)yn(t) − δ(t)v(t)]

≤ λ(t) − μ(t)x(t) − β l

2βu
kl

1y1(t) − 1

22
· β lkl

1

βuk̃u
1

· kl
2y2(t) − · · · − 1

2n−1
· β l

βu
·

n−2∏
i=1

(
kl

i

k̃u
i

)
· kl

n−1yn−1(t)

− 1

2n
· β l

βu
·

n−1∏
i=1

(
kl

i

k̃u
i

)
· kl

nyn(t) − 1

2n
· β l

βu
·

n∏
i=1

(
kl

i

k̃u
i

)
δlv(t)

≤ λ(t) − σH(t), (7)

here σ = min{μl ,
kl

1
2 ,

kl
2

2 , . . . ,
kl

n
2 , δl}. By (7) and Lemma 1, we have

lim sup
t→+∞

H(t) ≤ λu

σ
. (8)

Thus, we easily have that

lim sup
t→+∞

y1(t) ≤ βuλu

β lσ
�= L̃1,

lim sup
t→+∞

y2(t) ≤ 2βuλu

β lσ

k̃u
1

kl
1

�= L̃2,

. . .

lim sup
t→+∞

yn(t) ≤ 2n−1βuλu

β lσ

n−1∏
i=1

(
k̃u

i

kl
i

)
�= L̃n,

lim sup
t→+∞

v(t) ≤ 2nβuλu

β lσ

n−1∏
i=1

(
k̃u

i

kl
i

)
�= L̃n+1,

where
�= means “is defined as”.

Furthermore, from the first equation of (1), ẋ(t) ≤ λ(t) − μ(t)x(t) ≤ λu − μlx(t), which implies that

lim sup
t→+∞

x(t) ≤ λu

μl

�= L̃0. (9)

So, x(t), y1(t), y2(t), . . . , yn(t), v(t) are bounded for all t ≥ 0 since H(t) is bounded for all t ≥ 0 since H(t) is bounded. This

completes the proof of Lemma 2. �

Lemma 3. The solution (x(t), y1(t), . . . , yn(t), v(t)) of system (1) with initial condition (3) satisfies

lim inf
t→+∞

x(t) ≥ q0, (10)

where

q0 =

⎛⎜⎝ λ(t)

μ(t) + 2nβ(t) · βu

β l

n∏
i=1

(
k̃u

i

kl
i

)
λu

σ

⎞⎟⎠l .

Proof. By Lemma 2, for any ε > 0, there exists a t0 > 0 large enough such that

v(t) ≤ 2nβu

β l

n∏
i=1

(
k̃u

i

kl
i

)
λu

σ
+ ε, t ≥ t0.
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Thus, by the first equation of system (1),

ẋ(t) ≥ λ(t) −
[
μ(t) + β(t)

(
2nβu

β l

n∏
i=1

(
k̃u

i

kl
i

)
λu

σ
+ ε

)]
x(t), t ≥ t0,

which means that lim inf
t→+∞

x(t) ≥ q0. This completes the proof of Lemma 4.

Define

W (t) = y1(t) + ku
1

k̃l
1

y2(t) + ku
1ku

2

k̃l
1
k̃l

2

y3(t) + · · · +
n−1∏
i=1

(
ku

i

k̃l
i

)
yn(t) +

n∏
i=1

(
ku

i

k̃l
i

)
v(t), (11)

and

G(t) = y1(t) + kl
1

k̃u
1

y2(t) + kl
1kl

2

k̃u
1
k̃u

2

y3(t) + · · · +
n−1∏
i=1

(
kl

i

k̃u
i

)
yn(t) +

n∏
i=1

(
kl

i

k̃u
i

)
v(t). (12)

�
Thus, we obtain the following Lemma.

Lemma 4. For any t large enough, then we have

(i)

W (t) ≤ a1y1(t) + a2y2(t) + · · · + anyn(t) + av(t), (13)

where

a1 = 1, aj =
j−1∏
i=1

(
ku

i

k̃l
i

)
, j = 2, 3, . . . , n, a =

n∏
i=1

(
ku

i

k̃l
i

)
.

(ii)

G(t) ≤ b1y1(t) + b2y2(t) + · · · + bnyn(t) + bv(t) ≤ W (t), (14)

where

b1 = 1, bj =
j−1∏
i=1

(
kl

i

k̃u
i

)
, j = 2, 3, . . . , n, b =

n∏
i=1

(
kl

i

k̃u
i

)
.

3. Permanence and extinction of system (1)

Denote

R∗ = β lλl

δuμu
·

n∏
i=1

(
k̃l

i

ku
i

)
R∗ = βuλu

δlμl
·

n∏
i=1

(
k̃u

i

kl
i

)
. (15)

Then we have the following theorem.

Theorem 1. The system (1) with initial condition (3) is permanent provided that R∗ > 1. Namely, we have the following results:

q̃1 ≤ lim inf
t→+∞

y1(t) ≤ lim sup
t→+∞

y1(t) ≤ L̃1,

q̃2 ≤ lim inf
t→+∞

y2(t) ≤ lim sup
t→+∞

y2(t) ≤ L̃2,

q̃3 ≤ lim inf
t→+∞

y3(t) ≤ lim sup
t→+∞

y3(t) ≤ L̃3,

. . .

q̃n ≤ lim inf
t→+∞

yn(t) ≤ lim sup
t→+∞

yn(t) ≤ L̃n,

q̃n+1 ≤ lim inf
t→+∞

v(t) ≤ lim sup
t→+∞

v(t) ≤ L̃n+1,

where q̃i and L̃i, i = 1, 2, . . . , n + 1 are defined in (43), (44) and Lemma 2, respectively.

Proof. Combining with Lemma 2 and the following Proposition 1, we will complete the proof of this theorem. �

Proposition 1. If R∗ > 1 holds, then for any positive solution (x(t), y1(t), . . . , yn(t), v(t)) of system (1) with (3), we have

lim inf
t→+∞

yi(t) ≥ q̃i, i = 1, 2, . . . , n lim inf
t→+∞

v(t) ≥ q̃n+1, (16)

where q̃1, q̃2, . . . , q̃n and q̃n+1 are defined in (43) and (44).



124 X. Wang et al. / Applied Mathematics and Computation 266 (2015) 119–134
Proof. Here we only show that it is true by the following four steps.

Step I. We will prove that for any solution of system (1), there exist

q1 = min

{
1

2

μuδl

βuk̃u
n

(R∗ − 1)
n−1∏
i=1

(
kl

i+1

k̃u
i

)
,

1

2

μu

βuα
(R∗ − 1)

n∏
i=1

(
ku

i

k̃l
i

)}
,

q2 = 1

2

μuδl

βuk̃u
n

(R∗ − 1)
n−1∏
i=2

(
kl

i+1

k̃u
i

)
,

. . .

qn−1 = 1

2

μuδl

βuk̃u
n

(R∗ − 1)
kl

n

k̃u
n−1

,

qn = 1

2

μuδl

βuk̃u
n

(R∗ − 1),

α = 1 + ku
1k̃u

1

k̃l
1
k̃l

2

+
2∏

i=1

(
ku

i
k̃u

i

k̃l
i
k̃l

i+1

)
+ · · · +

n−2∏
i=1

(
ku

i
k̃u

i

k̃l
i
k̃l

i+1

)
+

n−1∏
i=1

(
ku

i
k̃u

i

k̃l
i
k̃l

i+1

)
, (17)

such that lim sup
t→+∞

y1(t) ≥ q1, lim sup
t→+∞

y2(t) ≥ q2, . . . , lim sup
t→+∞

yn(t) ≥ qn, respectively. If they are not true, without loss of gen-

erality, we assume that lim sup
t→+∞

y1(t) < q1, from the third equation of system (1), we have

ẏ2(t) = k̃1(t)y1(t) − k2(t)y2(t) ≤ k̃1q1 − kl
2y2(t),

by Lemma 1, lim sup
t→+∞

y2(t) ≤ k̃u
1

kl
2

q1. Similarly, from the last (n − 1) equations of system (1), we get

lim sup
t→+∞

y3(t) ≤ k̃u
1k̃u

2

kl
2
kl

3

q1, . . . , lim sup
t→+∞

yn(t) ≤
n−1∏
i=1

(
k̃u

i

kl
i+1

)
q1, lim sup

t→+∞
v(t) ≤

n−1∏
i=1

(
k̃u

i

kl
i+1

)
k̃u

n

δl
q1.

Thus, by the first equation of system (1), we obtain

ẋ(t) = λ(t) − μ(t)x(t) − β(t)x(t)v(t) ≥ λl −
[
μu + βu · q1

n−1∏
i=1

(
k̃u

1

kl
i+1

)(
k̃u

n

δl

)]
x(t),

it follows from Lemma 1 that

lim inf
t→+∞

x(t) ≥ λl

μu + βu · q1

n−1∏
i=1

(
k̃u

i

kl
i+1

)(
k̃u

n

δl

) �= h(q1). (18)

Note that the definition of W(t), we obtain

Ẇ (t) = β(t)x(t)v(t) + ku
1

k̃l
1

k̃1(t)y1(t) − k1(t)y1(t) + ku
1ku

2

k̃l
1
k̃l

2

k̃2(t)y2(t) − ku
1

k̃l
1

k2(t)y2(t) + · · ·

+
n−1∏
i=1

(
ku

i

k̃l
i

)[
ku

n

k̃l
n

k̃n(t)yn(t) − kn(t)yn(t)

]
−

n∏
i=1

(
ku

i

k̃l
i

)
δ(t)v(t)

≥ β(t)x(t)v(t) −
n∏

i=1

(
ku

i

k̃l
i

)
δ(t)v(t)

≥
(

β lh(q1) −
n∏

i=1

(
ku

i

k̃l
i

)
δu

)
v(t) > 0, (19)

from (15), (17) and (19) , then

Ẇ (t) ≥

⎛⎜⎜⎝β l λl

μu + βu · q1

n−1∏
i=1

(
k̃u

i

kl
i+1

)(
k̃u

n

δl

) −
n∏

i=1

(
ku

i

k̃l
i

)
δu

⎞⎟⎟⎠v(t)

≥
(

β lλl

μu + μu

2
(R∗ − 1)

−
n∏

i=1

(
ku

i

k̃l
i

)
δu

)
v(t)
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= δu
n∏

i=1

(
ku

i

k̃l
i

)
R∗ − 1

R∗ + 1
v(t) > 0, if R∗ > 1, (20)

which implies that W(t) is increasing, using Lemma 4, W(t) is positive bounded, so there must exist a constant W∗ > 0 such

that W(t) → W∗ when t → +∞, which means that Ẇ (t) → 0 when t → +∞, this reduces that v(t) → 0, y(t) → 0 as t → +∞. So

W(t) → 0 as t → +∞, which reduces a contradiction. Thus lim sup
t→+∞

y1(t) ≥ q1. Similarly, we can easily obtain

lim sup
t→+∞

y2(t) ≥ q2, lim sup
t→+∞

y3(t) ≥ q3, . . . , lim sup
t→+∞

yn(t) ≥ qn.

Step II. Secondly, we will show that there exists a constant γ = αq1e−(τ+2p)δu
> 0 such that W(t) ≥ γ .

By Step I, we obtain that for any t0 > 0,

W (t) <

(
1 + ku

1k̃u
1

k̃l
1
kl

2

+
2∏

i=1

(
ku

i
k̃u

i

k̃l
i
kl

i+1

)
+ · · · +

n−2∏
i=1

(
ku

i
k̃u

i

k̃l
i
kl

i+1

)
+

n−1∏
i=1

(
ku

i
k̃u

i

k̃l
i
kl

i+1

))
q1

�= αq1

is impossible for all t ≥ t0. Hence, we will consider the two possibilities as follows:

(i) W(t) ≥ αq1 for all t large enough;

(ii) W(t) oscillates about αq1 for all t large enough.

Obviously, we only need to consider the second case. Let t1 and t2 be sufficiently large times satisfying

W (t1) = W (t2) = αq1, W (t) < αq1, ∀t ∈ (t1, t2),

If t2 − t1 ≤ 2p, where

p = 1

μu(R∗ + 1)
ln

4R∗
R∗ − 1

> 0. (21)

From (11), we obtain

n∏
i=1

(
ku

i

k̃l
i

)
v(t) ≤ W (t) < αq1, ∀t ∈ (t1, t2),

that is

v(t) ≤ αq1

n∏
i=1

(
k̃l

i

ku
i

)
, ∀t ∈ (t1, t2).

It follows that from the first equation of system (1), we get

ẋ(t) = λ(t) − μ(t)x(t) − β(t)x(t)v(t)

≥ λl −
(

μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

))
x(t), ∀t ∈ (t1, t2). (22)

For any ∀t ∈ (t1, t2), integrating the inequality (22) from t1 to t2, we have

x(t) ≥ x(t1) exp

(
−
∫ t

t1

(
μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

))
ds

)
+
∫ t

t1

λl exp

(
−
∫ t

s

(
μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

))
dθ

)
ds

≥ λl

μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

)(1 − exp

(
−
(

μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

))
(t − t1)

))
. (23)

Thus, we have

x(t) ≥ λl

μu + βuαq1

n∏
i=1

(
k̃l

i

ku
i

) − ε0
�= x� > 0, ∀t ∈ (t1 + p, t2), (24)

where

ε0 = 1

2

δu

β l

n∏
i=1

(
ku

i

k̃l
i

)
R∗ − 1

R∗ + 1
= 1

2

λl

μu

R∗ − 1

R∗(R∗ + 1)
> 0.
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According to (11), (17) and (19), we further obtain

Ẇ (t) ≥
(

β lx(t) −
n∏

i=1

(
ku

i

k̃l
i

)
δu

)
v(t) > −

n∏
i=1

(
ku

i

k̃l
i

)
δuv(t)

≥ −δuW (t), ∀t ∈ (t1, t2). (25)

Noting that t2 − t1 < 2p, then

W (t) ≥ W (t1)e
− ∫ t

t1
δuds = αq1e−δu(t−t1) ≥ αq1e−2pδu �= γ . (26)

If t2 − t1 > 2p, clearly, when t ∈ [t1, t1 + 2p], W(t) ≥ γ holds; when t ∈ [t1 + 2p, t2], from (19),

Ẇ (t) ≥ β(t)x(t)v(t) −
n∏

i=1

(
ku

i

k̃l
i

)
δ(t)v(t)

≥
(

β lx� −
n∏

i=1

(
ku

i

k̃l
i

)
δu

)
v(t) > 0, if R∗ > 1,

then we have

W (t) ≥ W (t1 + 2p) ≥ γ , ∀t ∈ [t1 + 2p, t2].

Therefore, if R∗ > 1, then for all t large enough, we obtain W(t) ≥ γ > 0, this means that

a1y1(t) + a2y2(t) + · · · + anyn(t) + av(t) ≥ γ > 0. (27)

Step III. Next, we will prove that there exists

γ = β lq0γ

ac
, γ1 = β lq0ku

1γ

aca1c1

, γ2 = ku
1

k̃l
1

ku
1ku

2

a1a2c1c2

β lq0γ

ac
, . . . ,

γn−1 =
(

ku
1

k̃l
1

)
n−2

(
ku

2

k̃l
2

)
n−1 . . .

(
ku

n−2

k̃l
n−2

)
·

n−1∏
i=1

(
ku

i

aici

)
βq0γ

ac
,

such that

lim inf
t→+∞

P̃1(t) = lim inf
t→+∞

(a1y1(t) + a2y2(t) + · · · + anyn(t)) > γ > 0,

lim inf
t→+∞

W̃1(t) = lim inf
t→+∞

(a2y2(t) + a3y3(t) + · · · + anyn(t) + av(t)) > γ1 > 0,

lim inf
t→+∞

W̃2(t) = lim inf
t→+∞

(a3y3(t) + a4y4(t) + · · · + anyn(t) + av(t)) > γ2 > 0,

· · ·
lim inf
t→+∞

W̃n−1(t) = lim inf
t→+∞

(anyn(t) + av(t)) > γn−1 > 0.

(28)

In fact, we denote

(i)

P1(t) = y1(t) + ku
1

k̃l
1

(
y2(t) +

∫ t

t

k̃1(s)y1(s)ds

)
+ ku

1ku
2

k̃l
1
k̃l

2

(
y3(t) +

∫ t

t

k̃2(s)y2(s)ds

)
+ · · ·

+
n−1∏
i=1

(
ku

i

k̃l
i

)(
yn(t) +

∫ t

t

k̃n−1(s)yn−1(s)ds

)
, (29)
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by Lemma 4, then we get

P1(t) ≤ y1(t) + a2y2(t) + a3y3(t) + · · · + anyn(t)

≤ a1y1(t) + a2y2(t) + a3y3(t) + · · · + anyn(t) = P̃1(t),

and

˙̃P1(t) ≥ Ṗ1(t) = β(t)x(t)v(t) − k1(t)y1(t) + ku
1

k̃l
1

k̃1(t)y1(t) + ku
1ku

2

k̃l
1
k̃l

2

k̃2(t)y2(t)

− ku
1

k̃l
1

k2(t)y2(t) + · · · +
n−1∏
i=1

(
ku

i

k̃l
i

)
(̃kn−1(t)yn−1(t) − kn(t)yn(t))

≥ β(t)x(t)v(t) −
n−1∏
i=1

(
ku

i

k̃l
i

)
kn(t)yn(t)

≥ β lq0v(t) −
n−1∏
i=1

(
ku

i

k̃l
i

)
ku

nyn(t). (30)

It follows from (27) that

v(t) ≥ γ − (a1y1(t) + a2y2(t) + · · · + anyn(t))

a
.

So, we have

˙̃P1(t) ≥ β lq0γ

a
− β lq0

a
(a1y1(t) + a2y2(t) + · · · + anyn(t)) −

n−1∏
i=1

(
ku

i

k̃l
i

)
ku

nyn(t)

≥ β lq0γ

a
− β lq0

a
(a1y1(t) + a2y2(t) + · · · + an−1yn−1(t)) −

(
β lq0

a
+ ku

n

)
anyn(t)

≥ β lq0γ

a
− cP̃1(t),

where

c = max

{
β lq0

a
+ ku

n,
β lq0

a

}
= β lq0

a
+ ku

n,

which implies that lim inf
t→+∞

P̃1(t) ≥ β l q0γ
ac

= γ , then

a1y1(t) + a2y2(t) + · · · + anyn(t) ≥ γ . (31)

(ii) Next, we denote

W1(t) = ku
1

k̃l
1

y2(t) + ku
1ku

2

k̃l
1
k̃l

2

(
y3(t) +

∫ t

t

k̃2(s)y2(s)ds

)
+

3∏
i=1

(
ku

i

k̃l
i

)(
y4(t) +

∫ t

t

k̃3(s)y2(s)ds

)
+ · · · +

n∏
i=1

(
ku

i

k̃l
i

)(
v(t) +

∫ t

t

k̃n(s)yn(s)ds

)
. (32)

Similarly, by Lemma 4, we have

W1(t) ≤ ku
1

k̃l
1

y2(t) + a3y3(t) + a4y4(t) + · · · + anyn(t) +
n∏

i=1

(
ku

i

k̃l
i

)
v(t)

≤ a2y2(t) + a3y3(t) + a4y4(t) + · · · + anyn(t) + av(t)
�= W̃1(t),

and

˙̃W 1(t) ≥ Ẇ1(t) = ku
1

k̃l
1

(̃k1(t)y1(t) − k2(t)y2(t)) + ku
1ku

2

k̃l
1
k̃l

2

(̃k2(t)y2(t) − k3(t)y3(t)) + · · ·

+
n−1∏
i=1

(
ku

i

k̃l
i

)
(̃kn−1(t)yn−1(t) − kn(t)yn(t)) +

n∏
i=1

(
ku

i

k̃l
i

)
(̃kn(t)yn(t) − δ(t)v(t))

≥ ku
1

k̃l
1

k̃l
1y1(t) − ku

1ku
2

k̃l
1

y2(t) + ku
1ku

2

k̃l
1
k̃l

2

(̃kl
2y2(t) − ku

3y3(t)) + · · · +
n∏

i=1

(
ku

i

k̃l
i

)
(̃kl

nyn(t) − δuv(t))

≥ ku
1y1(t) −

n∏
i=1

(
ku

i

k̃l
i

)
δuv(t), (33)
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it follows from (31) that

y1(t) ≥ γ − (a2y2(t) + a3y3(t) + · · · + anyn(t))

a1

,

thus we have

˙̃W 1(t) ≥ ku
1γ

a1

− ku
1

a1

(a2y2(t) + a3y3(t) + · · · + anyn(t)) −
n∏

i=1

(
ku

i

k̃l
i

)
δuv(t)

≥ ku
1γ

a1

− ku
1

a1

(a2y2(t) + a3y3(t) + · · · + anyn(t)) − δuav(t)

≥ ku
1γ

a1

− c1W̃1(t),

where c1 = max{ ku
1

a1
, δu}, which means that

lim inf
t→+∞

W̃1(t) ≥ ku
1γ

a1c1

= β lq0ku
1γ

aa1cc1

�= γ1. (34)

(iii) Denote

W2(t) = ku
1ku

2

k̃l
1
k̃l

2

y3(t) +
3∏

i=1

(
ku

i

k̃l
i

)(
y4(t) +

∫ t

t

k̃3(s)y3(s)ds

)
+

4∏
i=1

(
ku

i

k̃l
i

)(
y5(t) +

∫ t

t

k̃4(s)y4(s)ds

)
+ · · ·

+
n−1∏
i=1

(
ku

i

k̃l
i

)(
yn(t) +

∫ t

t

k̃n−1(s)yn−1(s)ds

)
+

n∏
i=1

(
ku

i

k̃l
i

)(
v(t) +

∫ t

t

k̃n(s)yn(s)ds

)
. (35)

Using Lemma 4, we have

W2(t) ≤ ku
1ku

2

k̃l
1
kl

2

y3(t) + a4y4(t) + · · · + anyn(t) +
n∏

i=1

(
ku

i

k̃l
i

)
v(t)

≤ a3y3(t) + a4y4(t) + · · · + anyn(t) + av(t)
�= W̃2(t),

and

˙̃W 2(t) ≥ Ẇ2(t) = ku
1ku

2

k̃l
1
k̃l

2

(̃k2(t)y2(t) − k3(t)y3(t)) +
3∏

i=1

(
ku

i

k̃l
i

)
(̃k3(t)y3(t) − k4(t)y4(t)) + · · ·

+
n−1∏
i=1

(
ku

i

k̃l
i

)
(̃kn−1(t)yn−1(t) − kn(t)yn(t)) +

n∏
i=1

(
ku

i

k̃l
i

)
(̃kn(t)yn(t) − δ(t)v(t))

≥ ku
1ku

2

k̃l
1

y2(t) −
n∏

i=1

(
ku

i

k̃l
i

)
δuv(t). (36)

Noting that (35), then

y2(t) ≥ γ1 − (a3y3(t) + a4y4(t) + · · · + anyn(t) + av(t))

a2

.

So, we have

˙̃W 2(t) ≥ ku
1ku

2γ1

k̃l
1
a2

− ku
1ku

2

k̃l
1
a2

(a3y3(t) + a4y4(t) + · · · + anyn(t) + av(t)) −
n∏

i=1

(
ku

i

k̃l
i

)
δuv(t)

≥ ku
1ku

2γ1

k̃l
1
a2

− c2W̃2(t),

where c2 = max

{
ku

1
ku

2

k̃l
1

a2

,
ku

1
ku

2

k̃l
1

a2

+ δu
}

= ku
1

ku
2

k̃l
1

a2

+ δu, by Lemma 1, then we obtain

lim inf
t→+∞

W̃2(t) ≥ ku
1ku

2γ1

k̃l
1
a2c2

= β lq0

a

(̃ku
1)

2ku
2γ

k̃l
1
a1a2c1c2c

�= γ2. (37)

(iv) Denote

W3(t) =
3∏

i=1

(
ku

i

k̃l
i

)
y4(t) +

4∏
i=1

(
ku

i

k̃l
i

)(
y5(t) +

∫ t

t

k̃4(s)y4(s)ds

)
+ · · · +

n∏
i=1

(
ku

i

k̃l
i

)(
v(t) +

∫ t

t

k̃n(s)yn(s)ds

)
. (38)
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Thus, by Lemma 4, we have

W3(t) ≤ a4y4(t) + a5y5(t) + · · · + anyn(t) + av(t)
�= W̃3(t),

and

˙̃W 3(t) ≥ Ẇ3(t) ≥ ku
1ku

2ku
3

k̃l
1
k̃l

2

y3(t) −
n∏

i=1

(
ku

i

k̃l
i

)
δuv(t)

≥
2∏

i=1

(
ku

i

k̃l
i

)
ku

3γ2

a3

− c3W̃3(t),

where

c3 = max

{
2∏

i=1

(
ku

i

k̃l
i

)
ku

3

a3

2∏
i=1

(
ku

i

k̃l
i

)
ku

3

a3

+ δu

}
=

2∏
i=1

(
ku

i

k̃l
i

)
ku

3

a3

+ δu,

which implies that

lim inf
t→+∞

W̃3(t) ≥
2∏

i=1

(
ku

i

k̃l
i

)
ku

3γ2

a3c3

�= γ3. (39)

Similarly, one by one we have

lim inf
t→+∞

W̃4(t) = lim inf
t→+∞

(a5y5(t) + · · · + anyn(t) + av(t)) ≥
3∏

i=1

(
ku

i

k̃l
i

)
ku

4γ3

a4c4

�= γ4,

lim inf
t→+∞

W̃5(t) = lim inf
t→+∞

(a6y6(t) + · · · + anyn(t) + av(t)) ≥
4∏

i=1

(
ku

i

k̃l
i

)
ku

5γ4

a5c5

�= γ5,

· · ·

lim inf
t→+∞

W̃n−2(t) = lim inf
t→+∞

(an−1yn−1(t) + anyn(t) + av(t)) ≥
n−3∏
i=1

(
ku

i

k̃l
i

)
ku

n−2γn−3

an−2cn−2

�= γn−2,

lim inf
t→+∞

W̃n−1(t) = lim inf
t→+∞

(anyn(t) + av(t)) ≥
n−2∏
i=1

(
ku

i

k̃l
i

)
ku

n−1γn−2

an−1cn−1

�= γn−1. (40)

Step IV. In this step, we will show that

lim inf
t→+∞

v(t) ≥ q̃n+1, (41)

where

q̃n+1 = 1

2

k̃l
nγn−1

anδu + k̃l
na

.

If (41) is not true, then

lim inf
t→+∞

v(t) < q̃n+1,

by the definition of inferior limit of v(t), we obtain that there exists a time-sequence {tn}∞
n=1

such that v(tn) ≤ q̃n+1, tn → +∞ as

n → ∞.

From Lemmas 2, 3, 4 and Step III,

W̃n−1(tn) = anyn(tn) + av(tn) ≥ γn−1,

thus

yn(tn) ≥ γn−1 − av(tn)

an
,

from the last equation of system (1), we obtain

v̇(tn) = k̃n(tn)y(tn) − δ(tn)v(tn)

≥ k̃n(tn)
γn−1 − av(tn)

an
− δ(tn)v(tn)

≥ k̃l
nγn−1

an
−
(

δu + k̃l
na

an

)
q̃n+1
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≥ k̃l
nγn−1

an
− anδu + k̃l

na

an
· 1

2

k̃l
nγn−1

anδu + k̃l
na

= k̃l
nγn−1

2an
> 0. (42)

According to (42), we will consider three cases as follows:

(i) If v(tn) oscillates about q̃n+1, obviously, there exists a subsequence {tn j
} such that tn j→+∞ as j → ∞, and v̇(tn j

) = 0, then it

is a contradiction since (42) holds.

(ii) If v(tn) < q̃n+1 and v(tn) is ultimately increase monotonically, from (42), then there exist Tn > 0 such that v(Tn) →
v∗(constant) ≤ q̃n+1 as n → ∞, so v̇(Tn) = 0 as n → ∞, but v̇(Tn) >

k̃l
nγn−1
2an

> 0, this reduces a contradiction.

(iii) If v(tn) < q̃n+1 and v(tn) is not ultimately increase monotonically, for any T > 0, ∃tT > T such that such that v̇(tT ) < 0 and

v(tT ) < q̃n+1, this contradiction again. Therefore, we have

lim inf
t→+∞

v(t) ≥ q̃n+1.

Step V. Finally, we will show that

lim inf
t→+∞

y1(t) ≥ q̃1, lim inf
t→+∞

y2(t) ≥ q̃2, . . . , lim inf
t→+∞

yn(t) ≥ q̃n

where q̃1, q̃2, . . . , q̃n, are defined in (43) and (44).

From the second equation of system (1) and Lemma 4, for all t large enough, we get ẏ1(t) = β(t)x(t)v(t) − k1(t)y1(t) ≥
β lq0q̃n+1 − ku

1
y1(t), according to Lemma 1, which implies that

lim inf
t→+∞

y1(t) ≥ β lq0q̃n+1

ku
1

= 1

2

β lq0

ku
1

k̃l
nγn−1

anδu + k̃l
na

= q̃1, (43)

where

γn−1 =
(

ku
1

k̃l
1

)
n−2

(
ku

2

k̃l
2

)
n−3 · · ·

(
ku

n−2

k̃l
n−2

)
·

n−1∏
i=1

(
ku

i

aici

)
β lq0

ac
γ ,

γ = αq1e−2pδu

,

and q0, ai, a, c, ci are defined in (10), (13) and Step III, respectively.

From the third equation of system (1) to the (n + 1)th equation of system (1), we have

lim inf
t→+∞

y2(t) ≥ k̃l
1q̃1

ku
2

�= q̃2,

lim inf
t→+∞

y3(t) ≥ k̃l
2q̃2

ku
3

= k̃l
1k̃l

2

ku
2
ku

3

q̃1
�= q̃2,

. . .

lim inf
t→+∞

yn(t) ≥
n−1∏
i=1

(
k̃l

i

ku
i+1

)
q̃1

�= q̃n, (44)

according to the methods of Theorem 3.2 in [34], we establish the sufficient conditions for the clearance of virus. �

Theorem 2. If R∗ < 1, then any positive solution (x(t), y1(t), . . . , yn(t), v(t)) of system (1) with (3) satisfies lim
t→+∞

yi(t) = 0, i =
1, 2, . . . , n, lim

t→+∞
v(t) = 0, and lim

t→+∞
|x(t) − w∗(t)| = 0, where w∗(t) is the ultimate limit of all the solutions of Eq. (4) with the initial

value w(0) > 0.

4. Numerical simulations

In this section, we present computer simulations of some results of the system (1) using MATLAB 7.1. Most of these values are

taken from Perelson and Nelson [5], Rong et al. [33]. To confirm our theoretical results, let us consider the following non-periodic
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Fig. 1. Dynamics of uninfected cells x(t), first stage of infected cells y1(t), second stage of infection y2(t), last stage of infected cells y3(t) and viral load v(t) in (45):

(a) with initial value (20000, 8000, 8000, 8000, 5000) and R∗ ≈ 1.836 > 1; (b) with initial value (10000, 30000, 30000, 30000, 50000) and R∗ ≈ 0.64 < 1.
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Fig. 2. Dynamics of uninfected cells x(t), first stage of infected cells y1(t), second stage of infection y2(t), last stage of infected cells y3(t) and viral load v(t) in

(45): (a) with initial value (20000, 8000, 8000, 8000, 5000) and R∗ ≈ 0.266 < 1 < R∗ ≈ 2.61; (b) with initial value (1000, 3000, 2000, 5000, 4000) and R∗ ≈ 0.199

< 1 < R∗ ≈ 2.455.
within-host virus model with three infected stages (that is, n = 3 in system (1))⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = λ − μx(t) − β(1 − a(0.5 sin(0.5t) + 0.6))x(t)v(t),
ẏ1(t) = β(1 − a(0.5 sin(0.5t) + 0.6))x(t)v(t) − k1y1(t),
ẏ2(t) = k1(1 − 0.6(0.3 cos(0.5t) + 0.5))y1(t) − k2y2(t),
ẏ3(t) = k2(1 − 0.5(0.4 sin(0.5t) + 0.6))y2(t) − k3y3(t),
v̇(t) = Nk3y3(t) − δv(t).

(45)

Then we have the following results:

(I) Persistence and extinction. Firstly, we choose the values of parameters λ = 10000, μ = 0.01, β = 0.000004, a = 0.7, N =
100, δ = 3, k0 = 0.3, k1 = 0.4, k2 = 0.6, k3 = 0.8 for system (45), from Theorem 1 and (15), we have R∗ ≈ 1.836 > 1, then the

system (45) is permanent (see Fig. 1(a)). If we choose the values of parameters λ = 10000, μ = 0.1, β = 0.000002, a = 0.5, N =
100, δ = 23, k0 = 0.3, k1 = 0.4, k2 = 0.6, k3 = 0.8 for system (45), from Theorem 2 and (15), we have R∗ ≈ 0.654 < 1, then the

system (45) goes to extinct (see Fig. 1(b)).

(II) The case R∗ < 1 < R∗. When the condition in neither Theorem 1 nor Theorem 2 is satisfied, we provide the simulations in

Fig. 2: If we chose parameters for system (45) as in Fig. 1(a) except parameter μ. That is, for system (45), we set μ = 0.01,



132 X. Wang et al. / Applied Mathematics and Computation 266 (2015) 119–134

0 50 100 150 200 250 300
3

4

5

6

Time t (Days)

Lo
g1

0 
un

in
fe

ct
ed

 C
D

4+  T
−

ce
lls

 x
(t

)

(a)
For three infected stages
For single−infected stage

0 50 100 150 200 250 300
2

3

4

5

6

Time t (Days)

Lo
g1

0 
vi

ra
l l

oa
d 

v(
t)

(b)

For three infected stages
For single−infected stage

Fig. 3. Comparisons on the counts of uninfected CD4+ T-cells of two systems (45), (46) (see (a)); the viral load of systems (45), (46) (see (b)).
we have R∗ ≈ 0.266 < 1 < R∗ ≈ 2.61, and the system (45) is permanent (see Fig. 2(a)); if we let μ = 0.1, N = 250, and other

parameters remain unchanged, then we have R∗ ≈ 0.199 < 1 < R∗ ≈ 2.455 for system (45), and the system (45) goes to extinct

(see Fig. 2(b)). Thus, when R∗ < 1 < R∗, both viral persistence and extinction are possible.

(III) Effects of the multiple infected stages. Here, we consider the system (1) with single-stage infected cells, which is similar to

system (31) in [34] as follows:{
ẋ(t) = λ − μx(t) − β(1 − a(0.5 sin(0.5t) + 0.6))x(t)v(t),
ẏ1(t) = β(1 − a(0.5 sin(0.5t) + 0.6))x(t)v(t) − k1y1(t),
v̇(t) = Nk1y1(t) − δv(t).

(46)

We choose the values of parameters for two systems (46) and (45) as the same as (I). And we compare the counts of uninfected

CD4+ T-cells and viral load corresponding to two systems. From Fig. 3, new simulation results can be observed by comparisons:

the counts of uninfected CD4+ T-cells of a non-autonomous delayed HIV-1 infection model with three infected stages are larger

than that of system with single infected stage (see Fig. 3(a)), the viral load of a non-autonomous delayed HIV-1 infection model

with three stages are less than that of system with single infected stage (see Fig. 3(b)).

(IV) Effects of the time-varying environments. Here, we consider the system (1) with single-stage infected cells, which is similar

to system (31) in [34] as follows:⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = λ − μx(t) − β(1 − a(−0.25 + 0.6))x(t)v(t),
ẏ1(t) = β(1 − a(−0.25 + 0.6))x(t)v(t) − k1y1(t),
ẏ2(t) = k1(1 − 0.6(−0.15 + 0.5))y1(t) − k2y2(t),
ẏ3(t) = k2(1 − 0.5(−0.2 + 0.6))y2(t) − k3y3(t),
v̇(t) = Nk3y3(t) − δv(t).

(47)

We choose the values of parameters for (47) as the same as (I). And we compare the counts of uninfected CD4+ T-cells and

viral load of non-autonomous system and autonomous system with multiple stages. From Fig. 4, the counts of uninfected CD4+

T-cells of a non-autonomous delayed HIV-1 infection model with three infected stages are larger than that of corresponding

autonomous system with multiple stage (see Fig. 4(a)), the viral load of a non-autonomous delayed HIV-1 infection model with

three stages are less than that of corresponding autonomous system with multiple stage (see Fig. 4(b)).

5. Conclusions

In [34], the authors have formulated a model of HIV infection incorporating non-periodic coefficients and two intracellular

time delays, and have established the conditions for the permanence and extinction of the virus. From the results of [34], Wang

et al. have obtained the complicated effects of the time-varying parameters on the sufficient conditions for the permanence

and the extinction of the model with single infected stage. In this paper, based on the results on the system (5) with single-

infected stage in [34], we proved some uniform persistent result of system (1) in Theorem 1 when the condition R∗ > 1 holds. In

Proposition 1 we obtained that explicit estimates of the lower bound of the viral load under condition R∗ > 1. In Theorem 2, under

condition R∗ < 1, we proved that the elimination of virus infection for system (1). These results generalize the corresponding

results in [34] and improve those in [34] by introducing multiple infected stages.
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Fig. 4. Comparisons on the counts of uninfected CD4+ T-cells of two systems (45), (47) (see (a)); the viral load of systems (45), (47) (see (b)).
We presented some numerical results for system (1) with three infected stages, respectively. Our first numerical results

showed that the persistence of systems (45) when R∗ > 1 (Fig. 1(a)) and the extinction of systems (45) when R∗ < 1 (Fig. 1(b));

in the second numerical study, we provided the simulations in Fig. 2 when the condition in neither Theorem 1 nor Theorem 2

is satisfied (i.e., R∗ < 1 < R∗); in the third numerical results, we investigated the comparison of the counts of uninfected CD4+

T-cells and viral load corresponding to the systems with single-infected stage and three infected stages (Fig. 3). The study shows

that the effects of multiple infected stages of the antiretroviral drug during HIV-1 virus infection seem to change the counts of

uninfected CD4+ T-cells and viral load.

Comparing to the corresponding Theorem 1 in [34] for the system (1) with single infected stage, we find that there is an

extra term
n∏

i=2

(
k̃u

i

kl
i

)
in our permanence and extinction criteria, which exists because of the multiple infected stages. The impact

of multiple infected stages hence can be explored through the sensitivity analysis of R∗. In fact, from the expressions of

R∗ = βuλu

δlμl
·

n∏
i=1

(
k̃u

i

kl
i

)
,

and (2), we can find that k̃i(t) ≤ ki(t) and
n∏

i=1

(
k̃u

i

kl
i

)
≤ 1. This implies that the more infected stages the cells have, the smaller R∗

becomes, thus it comes from Theorem 2 that the more possibly the system will goes infection-free and hence there will be more

uninfected CD4+ T-cells may be retained as well.

In summary, we provided investigations of the impact of multiple infected stages on HIV virus dynamic model under time-

varying environment. The interactions between HIV virus particles and different stages for infected cells are more complex

compared to the autonomous (or non-autonomous) HIV infection models with single-infected stage. Moreover, we simplified our

model formulations by continuous change from early stage to the final stage and did not consider mutation and drug resistance

of infected cells in each stage. The present system may not completely display the real biological meanings. Therefore, it is still

an open problem to study the system (1) with mutation or drug resistance which may raise more interesting and challenging

mathematics problems.
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