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A korean pine forest model with impulsive thinning measure is presented by using impulsive
state feedback system to investigate the periodicity of the regeneration process of the forest.
Based on the qualitative properties of the corresponding continuous system, the existences
of order-1 periodic solutions are discussed. If the positive equilibrium of the continuous sys-
tem is globally stable, then the impulsive state feedback system has an order-1 periodic solu-
tion and no order-kðk P 2Þ periodic solution. The conditions for the orbitally asymptotical
stability of order-1 periodic solution are given and discussed by the analogue of the Poincaré
criterion. For the case that the continuous system has a stable limit cycle, the existence of
order-1 periodic solution of the impulsive state feedback system are also discussed, the
results show that there are three kinds of order-1 periodic solutions. Finally, the mathemat-
ical results are verified by the numerical simulations. Moreover, the numerical results show
that the impulsive state feedback system has order kðk P 1Þperiodic solutions in the interior
of the limit cycle of the continuous system for some parameters.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Korean pine (Pinus koraiensis Sieb.et Zucc.) is a precious and rare tree species and mainly distributes in Changbai Mountain
and Xingan Mountain areas of China. A few of them distribute in some areas of Japan, Korea and Russia. To protect the korean
pine forest and maintain its regeneration and succession, the management measures such as quantitative thinning, thinning
and single tree selective cutting are taken. In those measures, the quantitative thinning is a main measure because it can not
only protect the species but also make the managers obtain economic benefits.

Some references have studied the storage of fallen trees of korean pine mixed forest [1], population structure and
regeneration mode [2]. A few of references have studied the dynamical behaviors of korean pine forest models. For examples,
Ref. [3] developed succession and silviculture model for broad-leaved pinus koriensis in Changbai Mountain by combining
the framework of ZELIG and characteristics of broad-leaved pinus koriensis forests in Changbai area. Ref. [4] studied the
structure of food net, habitat conditions, nature regeneration, the species structure of young forest and mature forest, and
of Henan
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gave the regeneration model of korean pine. Ref. [5] have studied the wave features of population changes of korean pine in
natural forest. To consider the dynamical properties of the regeneration model, Ref. [6] presented and studied a kind of
mathematical model of population age replace of korean pine in natural forest. In paper [6], the conditions for the existences
and stabilities of the equilibrium and the limit cycle are given.

Considering the current level of korean pine, the strategies of tending and thinning was taken in Changbai Mountain and
Xingan Mountain areas. The main purpose of tending and thinning is to implement the forest, adjust the stand density,
improve stand condition, improving forest quality, enhancement and play a variety of beneficial function of forest. Besides,
through the thinning activities, the production of a certain number of wood is to meet the needs of national construction and
people’s life. But the time and the total yield of thinning depend on the state of the forest. Therefore, a model of korean
pine with impulsive thinning is presented to describe the regeneration process of the forest under mankind’s management
measure.

There are some papers investigating the biological and mathematical model with impulsive control. For example, Ref.
[7,8] discussed the pest models with impulsive control. Ref. [9,10] discussed the periodic solution of two microorganism cul-
ture systems with impulsive state feedback control by the existence criteria of periodic solution of a general planar impulsive
autonomous system. Ref. [11] considered the system with impulsive state feedback control as semi-continuous dynamical
system, and gave the definitions and some methods to discuss the qualitative problems of the models. As the applications
of semi-continuous dynamical system, papers [12–15] etc. gave the preliminary results about the biomathematical model
with impulsive state feedback control. In this paper, we will discuss a kind of korean pine model with impulsive thinning
measure, which depends on the state of the species population, and show the periodicity of the regeneration of the forest.

2. Model formulation and preliminary

Paper [6] presented the following model to study the population age replace of korean pine forest.
dx
dt ¼ x 1� x

k

� �
� axy

xþc ;

dy
dt ¼ bxy� dy;

(
ð2:1Þ
where x and y denote the population of sapling and seed trees (that is, young trees and mature trees),respectively. Param-
eters k; a; b; c and d are positive. System (2.1) assumed that

(H1) The intrinsic rate of increase of the sapling trees satisfies the Logistic function i:e: x 1� x
k

� �� �
, the restriction from the

seed trees is similar to the Holling type II functional response, that is, � x
xþc.

(H2) The growth rate of seed trees is proportion to the sapling, that is to say, more sapling trees and more seed trees.

Since the population of seed trees reaches some levels, it will decrease the growth rate of saplings trees, then the harvest
of seed trees is necessary to maintain the growth of sapling trees. At the same time, the moderate thinning of the seed trees
can increase the number of the big diameter wood and the production of dimension lumbers, and then increases the benefits
of the managers. The thinning measures of seed trees have constant thinning and proportional thinning. In this paper, we
only consider the thinning measure of the proportional harvest, that is, when the population of the seed trees reaches a
threshold level (denoted by h), the seed trees is harvested by proportional thinning measure, and the harvest rate is denoted
by pð0 < p < 1Þ. Incorporating the thinning measure, system (2.1) becomes the following forms:
dx
dt ¼ x 1� x

k

� �
� axy

xþc ;

dy
dt ¼ bxy� dy;

)
y < h;

Dx ¼ 0;
Dy ¼ �py;

�
y ¼ h;

8>>>><>>>>: ð2:2Þ
where Dx ¼ xþ � x;Dy ¼ yþ � y. Denote the impulse set of system (2.2) by M ¼ fðx; yÞjy ¼ hg and the image set of the impulse
set M by N ¼ fðx; yÞjy ¼ ð1� pÞhg. Throughout the paper, we assume that xð0Þ > 0 and 0 < yð0Þ < h.

In the following, we will discuss the order-kðk P 1Þ periodic solution of system (2.2) to show the periodicity and stability
of the regeneration korean pine of the forest under the impulsive thinning measure. Next, we give the basic properties of
system (2.1) which is the continuous subsystem of system (2.2).

Lemma 2.1 [6]. If bk > d, then system (2.1) has three equilibria: ð0;0Þ; ðk;0Þ and ðx�; y�Þ, where
x� ¼ d
b
; y� ¼ 1

a
c þ d

b

� �
1� d

bk

� �
:

The equilibria ð0;0Þ and ðk;0Þ are saddle points. The point ðx�; y�Þ is unstable if bk� bc � 2d > 0, stable if bk� bc � 2d 6 0.
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Lemma 2.2 [6]. If bk� bc � 2d 6 0, then equilibrium ðx�; y�Þ is globally stable.
Lemma 2.3 [6]. If kb� bc � 2d < 0, then system (2.1) has no limit cycle and closed orbit in Rþ ¼ fðx; yÞjx > 0; y > 0g.
Lemma 2.4 [6]. System (2.1) has a unique stable limit cycle in Rþ ¼ fðx; yÞjx > 0; y > 0g if and only if kb� bc � 2d > 0.
The illustration of vector fields of system (2.1) can be seen in Fig.1, where L1 and L2 are the isoclines, that is,

L1 : y ¼ 1
a ðxþ cÞð1� x

kÞ and L2 : x ¼ x�.
System (2.2) is of impulsive semi-dynamical system. The definitions and results of impulsive semi-dynamical system can

be found in Ref. [16]. Here only gives the definition of order-kðk P 1Þ periodic solution. More details can be seen in Ref. [16]
and Ref. [11].

Definition 2.5. (Lakshmikantham, et al. [16]). A trajectory epx is said to be periodic of order k if there exist positive integers
m P 1 and k P 1 such that k is the smallest integer for which xþm ¼ xþmþk.

In order to investigate the qualitative properties of system (2.2), we need introduce the successor function. For system
(2.2), we define the successor function as follows:

Definition 2.6. Let M and N be the lines where the impulse set and its image set lies on respectively (see Fig.2). We define a
new coordinate axis O0 on the line N, the direction and length unit of the new coordinate axis are the same as that of the axis-
x. For any point Aðx; yÞ 2 N; x > 0; y > 0, the new coordinate of Aðx; yÞ denotes by lðAÞ and lðAÞ ¼ x.

For any point Aðx0; y0Þ 2 N, the trajectory of system (2.2) starting from the point A hits the impulse set M, and then jumps
to A1ðx1; y1Þ 2 N; y0 ¼ y1 ¼ ð1� pÞh, then the point A1 is said to the success point of A, and the success function can be written
as f ðAÞ ¼ lðA1Þ � lðA0Þ ¼ x1 � x0.
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Fig. 1. The illustration of vector fields of system (2.1). a. Equilibrium ðk;0Þ is stable; b. Equilibrium ðx�; y�Þ is a stable node; c. Equilibrium ðx� ; y�Þ is a stable
focus; d. System (2.1) has an limit cycle.
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Fig. 2. The illustration of the success function of system (2.1).
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Lemma 2.7 (Analogue of the Poincaré criterion [17]). The T-periodic solution x ¼ nðtÞ; y ¼ gðtÞ of the system
dx
dt ¼ Pðx; yÞ; dy

dt ¼ Qðx; yÞ; if /ðx; yÞ – 0;
Dx ¼ Aðx; yÞ;D ¼ Bðx; yÞ; if /ðx; yÞ ¼ 0

(

is orbitally asymptotically stable and enjoys the property of asymptotic phase if the multiplier l2 satisfies the condition jl2j < 1,
where
l2 ¼
Yq

k¼1

Dk exp
Z T

0

@P
@x
ðnðtÞ;gðtÞÞ þ @Q

@y
ðnðtÞ;gðtÞÞ

� �
dt

� �
;

Dk ¼
Pþ @B

@y
@/
@x � @B

@x
@/
@y þ

@/
@x

	 

þ Qþ @A

@x
@/
@y � @A

@y
@/
@x þ

@/
@y

	 

P @/
@x þ Q @/

@y
and P;Q ; @A
@x ;

@A
@y ;

@B
@x ;

@B
@y ;

@/
@x ;

@/
@y are calculated at the point ðnðskÞ; gðskÞÞ and Pþ ¼ Pðnðsþk Þ; gðsþk ÞÞ; Qþ ¼ Qðnðsþk Þ; gðsþk ÞÞ.
3. The existence of order-1 periodic solution for bk� bc � 2d <0

From Lemma 2.2, we know that the positive equilibrium ðx�; y�Þ is globally stable if bk� bc � 2d 6 0. In the following, we
discuss the periodic solution for the cases of h < y� and h > y�, respectively.

3.1. The case of h < y�

Theorem 3.1. If h < y�, them system (2.2) has a unique order-1 periodic solution.
Proof. If h < y�, then the line y ¼ ð1� pÞh intersects the isoclinic lines L2 and L1 at the point AðxA; ð1� pÞhÞ and BðxB; ð1� pÞhÞ
respectively (see Fig.3). The trajectory from the point A hits the impulse set M at the point A1 and then jumps to the point
A1ðxA1 ; ð1� pÞhÞ 2 N ¼ fðx; yÞjy ¼ ð1� pÞhg, so the point A1 is the success point of A, the success function f ðAÞ ¼ lðA1Þ � lðxAÞ.
Clearly, f ðAÞ ¼ xA1 � xA > 0. On the other hand, the trajectory starting from the point BðxB;hÞ hits the impulse set M at the
point B1 and then jumps to the point B1ðxB1 ;hÞ 2 N, so the point B1 is the success point of B, the success function
f ðBÞ ¼ lðB1Þ � lðxBÞ. Clearly, f ðBÞ ¼ xB1 � xB < 0. Therefore, there must exist a point CðC 2 NÞ between A and B such that
f ðCÞ ¼ lðxCÞ � lðxC1 Þ ¼ 0. That is to say, the trajectory starts from the point C is an order-1 periodic solution of system (2.2).

Since the trajectories starting from the points in the sets fðx; yÞj0 < x < xA; y ¼ ð1� pÞhg and fðx; yÞjx > xB; y ¼ ð1� pÞhg
will enter the set AB ¼ fðx; yÞjxA 6 x 6 xB; y ¼ ð1� pÞhg after several times impulsive effects at most, then the initial point of
the order-1 periodic solution only lies in the set AB ¼ fðx; yÞjxA < x < xB; y ¼ ð1� pÞhg.

The set AB ¼ fðx; yÞjxA 6 x 6 xB; y ¼ ð1� pÞhg is mapped to the set A1B1 ¼ fðx; yÞjxA1 < x < xB1 ; y ¼ hg by the first and
second equations of system (2.2). Subsequently, the set A1B1 is mapped to the set A1B1 ¼ fðx; yÞjxA1 < x < xB1 ; y ¼ ð1� pÞhg
by the third and fourth equations of system (2.2). Since h < y�, it is easily to know that xA < xA1 ; xB1 < xB, the line segments
AB and A1B1 satisfy jABj > jA1B1j. We continue the above process and know from the vector fields of system (2.2) that
jABj > jA1B1j > jA2B2j > � � �
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Fig. 3. The illustration of existence of order-1 periodic solution of system (2.1).
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and
xA < xA1 < xA2 < � � � < xB2 < xB1 < xB:
Therefore, the sequence jAnBnj is convergent monotonously and limn!1jAnBnj ¼ 0, which implies that there exists a unique
point C such that f ðCÞ ¼ lðxCÞ � lðxC1 Þ ¼ 0. Furthermore, system (2.2) has a unique order-1 periodic solution for h < y�. This
completes the proof. h
Theorem 3.2. The order-1 periodic solution of system (2.2) is orbitally asymptotically stable and enjoys the property of asymptotic
phase if h < y� and
�x�ðkþ cÞ2 þ ak2hðkþ cÞ � kacð1� pÞh < 0:
In particular, if h < h� ¼ kþc
a2 x�, the order-1 periodic solution is orbitally asymptotically stable if it exists.
Proof. According to Lemma 2.7, let C be the order-1 periodic solution, ðn; ð1� pÞhÞ 2 N and ðn1;hÞ 2 M. So we have
Pðx; yÞ ¼ x 1� x
k

	 

� axy

xþ c
; Qðx; yÞ ¼ bxy� dy;

Aðx; yÞ ¼ 0;Bðx; yÞ ¼ �py; /ðx; yÞ ¼ y� h:
Furthermore,
Pþ ¼ n 1� n
k

� �
� anð1� pÞh

nþ c
; Qþ ¼ ðbn� dÞð1� pÞh; Q ¼ ðbn� dÞh
and
@A
@x
¼ 0;

@A
@y
¼ 0;

@B
@x
¼ 0;

@B
@y
¼ �p;

@/
@x
¼ 0;

@/
@y
¼ 1;
then D1 ¼ Qþ
Q ¼ 1� p.

Since
@P
@x
¼ x� 2x

k
� acy

ðxþ cÞ2
¼

_x
x
� x

k
þ axy

xþ c
� acy

ðxþ cÞ2
;

@Q
@y
¼ bx� d ¼

_y
y
;

Z T

0

@Q
@y

dt ¼
Z T

0

dy
dt

1
y

dt ¼
Z h

ð1�pÞh
dðln yÞ ¼ ln

1
1� p

;

and
R T

0
_x
x dt ¼

R n
n dðln xÞ ¼ 0, then
Z T

0

@P
@x
þ @Q
@y

� �
dt ¼ ln

1
1� p

þ
Z T

0
� x

k
þ axy

xþ c
� acy

ðxþ cÞ2

 !
dt;
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and
l2 ¼ exp
Z T

0
� x

k
þ axy

xþ c
� acy

ðxþ cÞ2

 !
dt

 !
:

For any point ðx; yÞ 2 C, since x� < x < k and ð1� pÞh < y < h, then
� x
k
þ axy

xþ c
� acy

ðxþ cÞ2
< � x�

k
þ akh

kþ c
� acð1� pÞh
ðkþ cÞ2

< 0
if �x�ðkþ cÞ2 þ ak2hðkþ cÞ � kacð1� pÞh < 0. Furthermore, 0 < l2 < 1.
In particular, if h < h�, then � x�

k þ
akh
kþc < 0 and 0 < l2 < 1, furthermore the order-1 periodic solution is orbitally

asymptotically stable if it exists. This completes the proof. h
3.2. The effects of the harvest rate p on order-1 periodic solution

Let C1C1 be the order-1 periodic solution C1 for p ¼ p1, the image set N1 ¼ fðx; yÞjy ¼ h1; h1 ¼ ð1� p1Þhg, where
C1 ¼ C1

T
N1; C1 ¼ C1

T
M. Without loss of generality, let p2 > p1, then N2 ¼ fðx; yÞjy ¼ h2; h2 ¼ ð1� p2Þhg (see Fig. 4.

When the harvest rate p is increased, then the point C1 is mapped to the point A1. According to system (2.2), the trajectory
starting from the point A1 goes to the point A1 and then jumps to the point A2 under the impulsive effect. It is easily know
that A2 is the success point of the point A1 and the success function f ðA1Þ ¼ lðA2Þ � lðA1Þ > 0. Denote the intersection point of
N2 and the isoclinic line L1 : dx=dt ¼ 0 by B2. Similar to the proof of Theorem 3.1, we know that there exists a unique point C2

between A1 and B2 such that f ðC2Þ ¼ 0, that is, there is a unique periodic solution for p ¼ p2, C2 ¼ C2
T

N2; C2 ¼ C2
T

M.
Clearly, from the above discussion, we know that the point of order-1 periodic solution on the impulse set
M ¼ fðx; yÞjy ¼ hg moves from C1 to C2 with the increase of the harvest rate p, that is, xC1 < xC2 .

3.3. The case of h > y�

Since the point ðk;0Þ is a saddle point for bk� kc � 2d 6 0, then there is a saddle separatrix denoted by l0 (see Fig. 5). Fur-
thermore,we know that l0 intersects with the isoclinic line L2 : x ¼ x� since dx=dt < 0 for the point ðx; yÞ 2 l0 and x > x�. De-
note the intersection point by Aðx�;h1Þ. According to system (2.2), the trajectories hit the impulse set M ¼ fðx; yÞjy ¼ hg from
below. Let G ¼ fðx; yÞjx > x�; 0 < y 6 h1g. The region G is divided into two parts G1 and G2 by the separatrix l0,
G1 ¼ fðx; yÞjx > x�; 0 < y 6 h1; l0 < 0g; G2 ¼ G� G1.

If y� < h < h1, then the trajectory passing through the point Bðx�;hÞ comes from the region G1. So there must exist p� such
that Bðx�;hÞ jumps to the point B1 and the curve segment BB1

_

becomes the order-1 periodic solution denoted by l. When
p < p�, all the trajectories will tend to the equilibrium ðx�; y�Þ after several impulsive effects at most. When p > p�, the point
B is mapped to the point B2 by the impulsive effect. According to the proof of Theorem 3.1, there also exists a unique order-1
periodic solution.

If h > h1, then the trajectory starting from the point A in the region G2 will enter the region G1 after several impulsive
effects at most, and then all the trajectories will tend to the equilibrium ðx�; y�Þ and system (2.2) has no order-1 periodic
solution.

Proposition 3.3. When kb� bc � 2d � 0 and h > y�, if y� < h < h1, then there exists a harvest rate p� such that system (2.2) has
an order-1 periodic solution for p P p� and no order-1 periodic solution for p < p�. If h > h1, then systems (2.2) has no order
kðk P 1Þ periodic solution.
O

1h

h

2h

1C

1C

1A

1A

2A B2C

2C

2 L1L2

Fig. 4. The illustration of the effects of the harvest rate p on the position of order-1 periodic solution.



Fig. 5. The illustration of existence of order-1 periodic solution of system (2.1) for y > y� .
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4. Periodic solution for kb� bc � 2d > 0

When kb� bc � 2d > 0, we know from Lemma 2.4 that system (2.1) has a unique limit cycle. Denote the limit cycle by C0.
The limit cycle intersects the isoclinic line L2 : x ¼ x� at two point Aðx�;h2Þ and Bðx�;h3Þ(see Fig. 6). The saddle sparatrix l0

intersects the isoclinic line L2 at the point ðx�; h1Þ. Clearly, h1 > h2 > y� > h3.
If h < y�, then we know from the proof of Theorem 3.1 that system (2.2) has a unique order-1 periodic solution.
If h > h1, then the trajectories of system (2.2) tend to the limit cycle after finite times impulsive effects at most for

t ! þ1 by Proposition 3.3.
If h2 < h < h1 and ð1� pÞh > h3, then there is no order-1 periodic solution and the trajectories of system (2.2) tend to the

limit cycle after finite times impulsive effects at most.
If y� < h < h2 and ð1� pÞh < h3, system (2.2) has an order-1 periodic solution. When h3 < ð1� pÞh < h2, the trajectories of

system (2.2) starting from the point ðx; yÞ; 0 < y < h2; x > x� will enter the interior of the limit cycle. So here only consider
the trajectories lie in the interior of the limit cycle.

Theorem 4.1. If y� < h < h2 and h3 < ð1� pÞh < h2, then system (2.2) has three kinds of order-1 periodic solutions.
(see Fig. 7).
A

B

1h

2h

3h

0l

l

1L

x

y

2L

Fig. 6. The illustration of existence of order-1 periodic solution of system (2.1) for kb� bc � 2d > 0.



Fig. 7. Three kinds of order-1 periodic solution of system (2.2) for kb� bc � 2d > 0; p1 > p2 > p3.
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Proof. From the vector fields of system (2.1), we know that dx=dt < 0 when the trajectory passing through the isocline L1

and x > x�, so for y� < h < h2 and h3 < ð1� pÞh < h2, there must exist a point A1 2 M and p1 (h3 < ð1� p1Þh < h2) such that
system (2.2) has an order-1 periodic solution which consists of A1, the image point A 2 N of A1 and the trajectory between
them (see Fig.7(a)).

Since the limit cycle is stable, then the trajectories starting from the point inside limit cycle tend to the limit cycle. For the
point A1ðxA1 ;hÞ close to the isocline L2 sufficiently, the trajectory passing through the point A1ðxA1 ;hÞ can intersect the line
x ¼ xA1 of the impulse function Dx ¼ 0 at two points for t ! �1 , then there exist p2 and p3(p2 > p3) such that system (2.2)
has an order-1 periodic solution, respectively, see Fig. 7(b) and (c). In particular, the trajectory between A and A1 can revolve
round the equilibrium ðx�; y�Þ several cycles, which is similar to Fig. 7(b). This completes the proof. h
5. Numerical simulations

In order to verify the mathematical results given above, let a ¼ 1; b ¼ 0:3; c ¼ 2; d ¼ 0:9; k ¼ 6, then
bk� bc � 2d ¼ �0:6 < 0. It is easily known from Lemma 2.3 that system (2.1) has no limit cycle and the equilibrium
ðx�; y�Þ ¼ ð3;2:5Þ is a focus point, see the dot line in Fig. 8. Fig. 8(a) shows that there exists an order-1 periodic solution
for h ¼ 2:4 < y� ¼ 2:5 and p ¼ 0:6. The trajectory starting from the initial point (4,1) tends to the order-1 periodic solution.
Fig. 8(b) shows the change of position of the order-1 periodic solution with the harvest rate p varying. With the harvest rate
increasing, the intersection point of order-1 periodic solution and the impulse set moves from left to right.

For the case of bk� bc � 2d < 0 and h > y�, the numerical simulations can be seen in Fig. 9. Fig. 9(a) shows that there ex-
ists an order-1 periodic solution for p ¼ 0:6. Fig. 9(b) show that there is no order-1 periodic solution for p ¼ 0:2, the trajec-
tory tends to the equilibrium ðx�; y�Þ after several impulses. Therefore, there must exist p�; p� 2 ð0:2;0:6Þ such that
Proposition 3.3 holds.

Let a ¼ 1; b ¼ 0:3; c ¼ 2; d ¼ 0:4; k ¼ 6, then bk� bc � 2d ¼ 0:4 > 0. It is easily known from Lemma 2.3 that system
(2.1) has a unique limit cycle, see Fig. 10. Fig. 10(a) shows that there exists an order-1 periodic solution for
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Fig. 8. The existence of order-1 periodic solution of system (2.1) for h < y� .
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h ¼ 2:4 < y�¼: 2:59 and p ¼ 0:6. Fig. 10(b) shows that the system has an order-1 periodic solution for h ¼ 4 > y� and p ¼ 0:6.
Let h ¼ 7:5 and p ¼ 0:8, then Fig. 10(c) shows that the trajectory tends to the limit cycle after one impulsive effect.

In Fig. 11, we can find that system (2.2) has three kinds of order-1 periodic solutions for bk� bc � 2d > 0; y� < h < h2 and
h3 < ð1� pÞh < h2, where ðx�;h2Þ and ðx�;h3Þ are the intersection points of the limit cycle and the isocline L2 : x ¼ x�; h2 > h3.

Theorem 4.1 only gives the existence of three kinds of order-1 periodic solutions for y� < h < h2 and h3 < ð1� pÞh < h2. If
p – p1; p2; p3, then the existences of order kðk P 1Þ periodic solutions can be seen in Fig. 12. From Fig. 12, we can see that
system (2.2) has order kðk ¼ 1;2; � � � ;6Þ periodic solutions for y� < h < h2 and h3 < ð1� pÞh < h2 respectively, which implies
that system (2.2) has complex dynamical behaviors for bk� bc � 2d > 0 and h > y�.
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6. Conclusions and discussions

In this paper,we have discussed the existence of periodic solution of the korean pine forest model with impulsive thinning
measure. The results show that the model has order-1 periodic solution for h < y� which is orbitally asymptotically stable if
Theorem 3.2 holds, and the existence of the periodic solution for h > y� or bk� bc � 2d 6 0 needs some conditions to
guarantee.

If bk� bc � 2d > 0, the existence of order kðk P 1Þ periodic solution is complex. If h < y�, there exists a unique periodic
solution. If h > y�, system (2.2) can have no periodic solution, three kinds of order-1 periodic solutions and order kðk P 2Þ
periodic solution. But there exist some troubles in the proof of the existences of order kðk P 2Þ periodic solution, which
be our next work.

Theses mathematical results show that, if the impulsive thinning measure is taken, the periodicity of the regeneration of
the korean pine forest is related to the threshold level h of the seed trees and the harvest rate p. If the value of the threshold
level is very big, system (2.2) has no order-kðk P 1Þ periodic solution and the trajectories tend to the equilibrium or the limit
cycle after finite times impulses at most, which implies that the impulsive thinning measure has no effects on the self-regen-
eration of the forest. If the threshold level and the harvest rate are given suitably, then system (2.2) has a unique order-1
periodic solution, the number of the young trees and the mature trees can be maintained periodically in certain level.
Therefore, in practice, the suitable threshold level and the harvest rate should be given to maintain the sustainable and stable
production of the forest.
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